L(s) = 1 | + 2-s + 4-s − 2.37·5-s − 7-s + 8-s − 2.37·10-s + 2.37·11-s − 13-s − 14-s + 16-s + 4.37·17-s + 1.62·19-s − 2.37·20-s + 2.37·22-s + 3.62·23-s + 0.627·25-s − 26-s − 28-s + 6.37·29-s − 4.74·31-s + 32-s + 4.37·34-s + 2.37·35-s − 4.37·37-s + 1.62·38-s − 2.37·40-s + 8.74·41-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s − 1.06·5-s − 0.377·7-s + 0.353·8-s − 0.750·10-s + 0.715·11-s − 0.277·13-s − 0.267·14-s + 0.250·16-s + 1.06·17-s + 0.373·19-s − 0.530·20-s + 0.505·22-s + 0.756·23-s + 0.125·25-s − 0.196·26-s − 0.188·28-s + 1.18·29-s − 0.852·31-s + 0.176·32-s + 0.749·34-s + 0.400·35-s − 0.718·37-s + 0.264·38-s − 0.375·40-s + 1.36·41-s + ⋯ |
Λ(s)=(=(1638s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1638s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.260385246 |
L(21) |
≈ |
2.260385246 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 7 | 1+T |
| 13 | 1+T |
good | 5 | 1+2.37T+5T2 |
| 11 | 1−2.37T+11T2 |
| 17 | 1−4.37T+17T2 |
| 19 | 1−1.62T+19T2 |
| 23 | 1−3.62T+23T2 |
| 29 | 1−6.37T+29T2 |
| 31 | 1+4.74T+31T2 |
| 37 | 1+4.37T+37T2 |
| 41 | 1−8.74T+41T2 |
| 43 | 1−11.1T+43T2 |
| 47 | 1−1.25T+47T2 |
| 53 | 1−8.74T+53T2 |
| 59 | 1−2T+59T2 |
| 61 | 1−5.11T+61T2 |
| 67 | 1−9.48T+67T2 |
| 71 | 1+4.74T+71T2 |
| 73 | 1+8.37T+73T2 |
| 79 | 1−4.74T+79T2 |
| 83 | 1+6T+83T2 |
| 89 | 1+3.25T+89T2 |
| 97 | 1−7.48T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.373857463487479114668721141890, −8.511085555264429188428361004414, −7.51167601164705766351562169422, −7.10947571004955242301607573170, −6.06076001080333560473021100537, −5.22538541035983250319292524494, −4.18261892703617307841785715116, −3.59714856281968611883874867388, −2.64434025492289001675448653364, −0.979531254790084051525936085842,
0.979531254790084051525936085842, 2.64434025492289001675448653364, 3.59714856281968611883874867388, 4.18261892703617307841785715116, 5.22538541035983250319292524494, 6.06076001080333560473021100537, 7.10947571004955242301607573170, 7.51167601164705766351562169422, 8.511085555264429188428361004414, 9.373857463487479114668721141890