L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s − 4.11i·5-s + (−0.866 + 0.5i)7-s − 0.999i·8-s + (−2.05 + 3.56i)10-s + (5.41 + 3.12i)11-s + (1.33 + 3.34i)13-s + 0.999·14-s + (−0.5 + 0.866i)16-s + (2.23 + 3.86i)17-s + (−2.94 + 1.70i)19-s + (3.56 − 2.05i)20-s + (−3.12 − 5.41i)22-s + (−1.49 + 2.58i)23-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s − 1.84i·5-s + (−0.327 + 0.188i)7-s − 0.353i·8-s + (−0.651 + 1.12i)10-s + (1.63 + 0.942i)11-s + (0.371 + 0.928i)13-s + 0.267·14-s + (−0.125 + 0.216i)16-s + (0.541 + 0.938i)17-s + (−0.675 + 0.390i)19-s + (0.797 − 0.460i)20-s + (−0.666 − 1.15i)22-s + (−0.311 + 0.539i)23-s + ⋯ |
Λ(s)=(=(1638s/2ΓC(s)L(s)(0.923−0.383i)Λ(2−s)
Λ(s)=(=(1638s/2ΓC(s+1/2)L(s)(0.923−0.383i)Λ(1−s)
Degree: |
2 |
Conductor: |
1638
= 2⋅32⋅7⋅13
|
Sign: |
0.923−0.383i
|
Analytic conductor: |
13.0794 |
Root analytic conductor: |
3.61655 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1638(1135,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1638, ( :1/2), 0.923−0.383i)
|
Particular Values
L(1) |
≈ |
1.110267906 |
L(21) |
≈ |
1.110267906 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866+0.5i)T |
| 3 | 1 |
| 7 | 1+(0.866−0.5i)T |
| 13 | 1+(−1.33−3.34i)T |
good | 5 | 1+4.11iT−5T2 |
| 11 | 1+(−5.41−3.12i)T+(5.5+9.52i)T2 |
| 17 | 1+(−2.23−3.86i)T+(−8.5+14.7i)T2 |
| 19 | 1+(2.94−1.70i)T+(9.5−16.4i)T2 |
| 23 | 1+(1.49−2.58i)T+(−11.5−19.9i)T2 |
| 29 | 1+(2.51−4.35i)T+(−14.5−25.1i)T2 |
| 31 | 1−10.7iT−31T2 |
| 37 | 1+(−3.52−2.03i)T+(18.5+32.0i)T2 |
| 41 | 1+(5.96+3.44i)T+(20.5+35.5i)T2 |
| 43 | 1+(1.83+3.17i)T+(−21.5+37.2i)T2 |
| 47 | 1−9.29iT−47T2 |
| 53 | 1−1.32T+53T2 |
| 59 | 1+(−2.81+1.62i)T+(29.5−51.0i)T2 |
| 61 | 1+(0.550+0.953i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−0.360−0.208i)T+(33.5+58.0i)T2 |
| 71 | 1+(−13.1+7.61i)T+(35.5−61.4i)T2 |
| 73 | 1−11.7iT−73T2 |
| 79 | 1−1.31T+79T2 |
| 83 | 1−8.04iT−83T2 |
| 89 | 1+(8.60+4.96i)T+(44.5+77.0i)T2 |
| 97 | 1+(10.5−6.07i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.432977419635513497496273459163, −8.673360464868108279538611960780, −8.319607208153126650979382619925, −7.06760343098430974736637467441, −6.31278656965280178936248882938, −5.24399175902788642328552978285, −4.22903852715136845753321174626, −3.70141404359133002302889539655, −1.68243821042084537098837174117, −1.39958233187838781177203090678,
0.56128592125252866826662667249, 2.30870770245819443981073822885, 3.26399926745146487215483505997, 4.01269597838947612820567713090, 5.75353791518343012983356947254, 6.31248416180033278478115554253, 6.85377869684081747328917692489, 7.67833455598890971352795063347, 8.432761849569828953929751523503, 9.532709239073225586928136273249