L(s) = 1 | − 1.48i·2-s − i·3-s − 0.193·4-s + (−1.48 − 1.67i)5-s − 1.48·6-s + 1.19i·7-s − 2.67i·8-s − 9-s + (−2.48 + 2.19i)10-s + 11-s + 0.193i·12-s − 0.806i·13-s + 1.76·14-s + (−1.67 + 1.48i)15-s − 4.35·16-s + 3.76i·17-s + ⋯ |
L(s) = 1 | − 1.04i·2-s − 0.577i·3-s − 0.0969·4-s + (−0.662 − 0.749i)5-s − 0.604·6-s + 0.451i·7-s − 0.945i·8-s − 0.333·9-s + (−0.784 + 0.693i)10-s + 0.301·11-s + 0.0559i·12-s − 0.223i·13-s + 0.472·14-s + (−0.432 + 0.382i)15-s − 1.08·16-s + 0.913i·17-s + ⋯ |
Λ(s)=(=(165s/2ΓC(s)L(s)(−0.749+0.662i)Λ(2−s)
Λ(s)=(=(165s/2ΓC(s+1/2)L(s)(−0.749+0.662i)Λ(1−s)
Degree: |
2 |
Conductor: |
165
= 3⋅5⋅11
|
Sign: |
−0.749+0.662i
|
Analytic conductor: |
1.31753 |
Root analytic conductor: |
1.14783 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ165(34,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 165, ( :1/2), −0.749+0.662i)
|
Particular Values
L(1) |
≈ |
0.395829−1.04521i |
L(21) |
≈ |
0.395829−1.04521i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+iT |
| 5 | 1+(1.48+1.67i)T |
| 11 | 1−T |
good | 2 | 1+1.48iT−2T2 |
| 7 | 1−1.19iT−7T2 |
| 13 | 1+0.806iT−13T2 |
| 17 | 1−3.76iT−17T2 |
| 19 | 1−5.35T+19T2 |
| 23 | 1+4iT−23T2 |
| 29 | 1−4.31T+29T2 |
| 31 | 1−0.962T+31T2 |
| 37 | 1−1.61iT−37T2 |
| 41 | 1−9.08T+41T2 |
| 43 | 1+4.41iT−43T2 |
| 47 | 1−12.3iT−47T2 |
| 53 | 1+1.42iT−53T2 |
| 59 | 1+13.2T+59T2 |
| 61 | 1+0.0752T+61T2 |
| 67 | 1+2.70iT−67T2 |
| 71 | 1+14.0T+71T2 |
| 73 | 1−10.7iT−73T2 |
| 79 | 1+13.9T+79T2 |
| 83 | 1−9.89iT−83T2 |
| 89 | 1+16.8T+89T2 |
| 97 | 1−11.4iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.35959905347996465801243796378, −11.68108486014377555521997134743, −10.73655288829009720883736592240, −9.476260888961579847257088249322, −8.442288094094856898763813947054, −7.32168950992682340257386495713, −5.95425153960378698893669772119, −4.31851509368664661542632254062, −2.90113401681275246849643611099, −1.21956741581243862017984637287,
3.05639885360294619392388421297, 4.52857750228403223662545657098, 5.86428820859869945912781221266, 7.09756438691985000544857407153, 7.66272035950727495763118504218, 8.987299273180007689724312625251, 10.19906073915398753106600901108, 11.31121787763888967858268662191, 11.86366906208083451104419412544, 13.78953006119763841521639059891