L(s) = 1 | − 1.48i·2-s − i·3-s − 0.193·4-s + (−1.48 − 1.67i)5-s − 1.48·6-s + 1.19i·7-s − 2.67i·8-s − 9-s + (−2.48 + 2.19i)10-s + 11-s + 0.193i·12-s − 0.806i·13-s + 1.76·14-s + (−1.67 + 1.48i)15-s − 4.35·16-s + 3.76i·17-s + ⋯ |
L(s) = 1 | − 1.04i·2-s − 0.577i·3-s − 0.0969·4-s + (−0.662 − 0.749i)5-s − 0.604·6-s + 0.451i·7-s − 0.945i·8-s − 0.333·9-s + (−0.784 + 0.693i)10-s + 0.301·11-s + 0.0559i·12-s − 0.223i·13-s + 0.472·14-s + (−0.432 + 0.382i)15-s − 1.08·16-s + 0.913i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.749 + 0.662i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.749 + 0.662i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.395829 - 1.04521i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.395829 - 1.04521i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + iT \) |
| 5 | \( 1 + (1.48 + 1.67i)T \) |
| 11 | \( 1 - T \) |
good | 2 | \( 1 + 1.48iT - 2T^{2} \) |
| 7 | \( 1 - 1.19iT - 7T^{2} \) |
| 13 | \( 1 + 0.806iT - 13T^{2} \) |
| 17 | \( 1 - 3.76iT - 17T^{2} \) |
| 19 | \( 1 - 5.35T + 19T^{2} \) |
| 23 | \( 1 + 4iT - 23T^{2} \) |
| 29 | \( 1 - 4.31T + 29T^{2} \) |
| 31 | \( 1 - 0.962T + 31T^{2} \) |
| 37 | \( 1 - 1.61iT - 37T^{2} \) |
| 41 | \( 1 - 9.08T + 41T^{2} \) |
| 43 | \( 1 + 4.41iT - 43T^{2} \) |
| 47 | \( 1 - 12.3iT - 47T^{2} \) |
| 53 | \( 1 + 1.42iT - 53T^{2} \) |
| 59 | \( 1 + 13.2T + 59T^{2} \) |
| 61 | \( 1 + 0.0752T + 61T^{2} \) |
| 67 | \( 1 + 2.70iT - 67T^{2} \) |
| 71 | \( 1 + 14.0T + 71T^{2} \) |
| 73 | \( 1 - 10.7iT - 73T^{2} \) |
| 79 | \( 1 + 13.9T + 79T^{2} \) |
| 83 | \( 1 - 9.89iT - 83T^{2} \) |
| 89 | \( 1 + 16.8T + 89T^{2} \) |
| 97 | \( 1 - 11.4iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.35959905347996465801243796378, −11.68108486014377555521997134743, −10.73655288829009720883736592240, −9.476260888961579847257088249322, −8.442288094094856898763813947054, −7.32168950992682340257386495713, −5.95425153960378698893669772119, −4.31851509368664661542632254062, −2.90113401681275246849643611099, −1.21956741581243862017984637287,
3.05639885360294619392388421297, 4.52857750228403223662545657098, 5.86428820859869945912781221266, 7.09756438691985000544857407153, 7.66272035950727495763118504218, 8.987299273180007689724312625251, 10.19906073915398753106600901108, 11.31121787763888967858268662191, 11.86366906208083451104419412544, 13.78953006119763841521639059891