L(s) = 1 | + (0.998 + 1.00i)2-s + (1.26 − 1.18i)3-s + (−0.00659 + 1.99i)4-s + (−1.54 + 0.894i)5-s + (2.44 + 0.0881i)6-s + (2.63 − 0.230i)7-s + (−2.00 + 1.99i)8-s + (0.206 − 2.99i)9-s + (−2.44 − 0.658i)10-s + (−0.501 + 0.868i)11-s + (2.35 + 2.53i)12-s − 2.47·13-s + (2.86 + 2.41i)14-s + (−0.904 + 2.96i)15-s + (−3.99 − 0.0263i)16-s + (3.32 − 5.76i)17-s + ⋯ |
L(s) = 1 | + (0.705 + 0.708i)2-s + (0.730 − 0.682i)3-s + (−0.00329 + 0.999i)4-s + (−0.692 + 0.399i)5-s + (0.999 + 0.0360i)6-s + (0.996 − 0.0869i)7-s + (−0.710 + 0.703i)8-s + (0.0686 − 0.997i)9-s + (−0.772 − 0.208i)10-s + (−0.151 + 0.261i)11-s + (0.679 + 0.733i)12-s − 0.685·13-s + (0.764 + 0.644i)14-s + (−0.233 + 0.765i)15-s + (−0.999 − 0.00659i)16-s + (0.807 − 1.39i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 - 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.71724 + 0.625000i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.71724 + 0.625000i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.998 - 1.00i)T \) |
| 3 | \( 1 + (-1.26 + 1.18i)T \) |
| 7 | \( 1 + (-2.63 + 0.230i)T \) |
good | 5 | \( 1 + (1.54 - 0.894i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (0.501 - 0.868i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 2.47T + 13T^{2} \) |
| 17 | \( 1 + (-3.32 + 5.76i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.85 + 3.22i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (6.85 - 3.95i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 0.748T + 29T^{2} \) |
| 31 | \( 1 + (-2.87 - 1.65i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.22 + 1.86i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 2.01T + 41T^{2} \) |
| 43 | \( 1 - 9.19iT - 43T^{2} \) |
| 47 | \( 1 + (1.19 + 2.07i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.33 + 10.9i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-7.34 - 4.24i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.02 - 3.50i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.89 - 3.98i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 5.46iT - 71T^{2} \) |
| 73 | \( 1 + (5.68 + 3.28i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.53 - 4.39i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 5.65iT - 83T^{2} \) |
| 89 | \( 1 + (-7.39 - 12.8i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 1.75iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.14824577658165584647051053970, −11.91996968120601614772519181713, −11.54967471479600175075779006718, −9.628047435591488068970728559903, −8.252160798771402035828106220632, −7.60638251679159714299755953766, −6.91907593537799546043447471728, −5.28092163425708551475514547492, −3.96250409649817187281096956184, −2.56451970836623776720488112930,
2.11188037131759971268282908547, 3.80947849295740081158958077563, 4.53919762110128336297863305947, 5.78545036172197569130438493891, 7.893489665413150228044260716058, 8.539603392578470780454986392744, 10.01477565215201327251650852177, 10.63172094506065280543742059472, 11.85208933131357686534552566192, 12.51007475368583402931652105668