L(s) = 1 | + (−0.389 + 1.35i)2-s + (1.72 − 0.143i)3-s + (−1.69 − 1.05i)4-s + (1.77 − 3.07i)5-s + (−0.476 + 2.40i)6-s + (−0.793 + 2.52i)7-s + (2.09 − 1.89i)8-s + (2.95 − 0.496i)9-s + (3.49 + 3.61i)10-s + (0.396 − 0.229i)11-s + (−3.08 − 1.58i)12-s − 0.799i·13-s + (−3.12 − 2.06i)14-s + (2.62 − 5.57i)15-s + (1.75 + 3.59i)16-s + (−5.48 + 3.16i)17-s + ⋯ |
L(s) = 1 | + (−0.275 + 0.961i)2-s + (0.996 − 0.0829i)3-s + (−0.848 − 0.529i)4-s + (0.795 − 1.37i)5-s + (−0.194 + 0.980i)6-s + (−0.299 + 0.953i)7-s + (0.742 − 0.670i)8-s + (0.986 − 0.165i)9-s + (1.10 + 1.14i)10-s + (0.119 − 0.0690i)11-s + (−0.889 − 0.456i)12-s − 0.221i·13-s + (−0.834 − 0.550i)14-s + (0.678 − 1.43i)15-s + (0.439 + 0.898i)16-s + (−1.33 + 0.767i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.838 - 0.544i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.838 - 0.544i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.29610 + 0.384122i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.29610 + 0.384122i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.389 - 1.35i)T \) |
| 3 | \( 1 + (-1.72 + 0.143i)T \) |
| 7 | \( 1 + (0.793 - 2.52i)T \) |
good | 5 | \( 1 + (-1.77 + 3.07i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.396 + 0.229i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 0.799iT - 13T^{2} \) |
| 17 | \( 1 + (5.48 - 3.16i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.61 - 4.53i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.55 + 2.68i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 2.60T + 29T^{2} \) |
| 31 | \( 1 + (4.42 - 2.55i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.89 - 1.67i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 10.1iT - 41T^{2} \) |
| 43 | \( 1 - 3.56T + 43T^{2} \) |
| 47 | \( 1 + (2.15 - 3.73i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.16 - 2.02i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.49 + 0.864i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.60 + 2.66i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.00979 - 0.0169i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 9.04T + 71T^{2} \) |
| 73 | \( 1 + (-4.15 - 7.19i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-10.8 - 6.28i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 0.694iT - 83T^{2} \) |
| 89 | \( 1 + (7.02 + 4.05i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 7.05T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.84530246476976521684661615087, −12.68173813138232664392652514333, −10.38420355206782137837843212768, −9.204986424475591669424513156881, −8.886864707183135871616497147266, −8.073493860637842233273141642481, −6.49575245828188247740094723172, −5.47809644650966945747586255945, −4.20443228483992500885797833568, −1.86923160073967519579101624938,
2.16609593909952094185110894725, 3.18733309352038886421432989424, 4.43289653265045351907557347860, 6.72295003717251523640886803235, 7.52454480173692302594736229977, 9.096868576061271843069791207927, 9.695172078425514049974316975852, 10.68432455633231926383174035485, 11.27596167371403372940779689151, 13.20552204411596049068405390037