L(s) = 1 | + (1.40 + 0.133i)2-s + (1.03 − 1.38i)3-s + (1.96 + 0.375i)4-s + (−0.692 + 1.19i)5-s + (1.64 − 1.81i)6-s + (−2.08 + 1.62i)7-s + (2.71 + 0.791i)8-s + (−0.839 − 2.88i)9-s + (−1.13 + 1.59i)10-s + (−3.82 + 2.20i)11-s + (2.56 − 2.33i)12-s − 6.43i·13-s + (−3.15 + 2.00i)14-s + (0.941 + 2.20i)15-s + (3.71 + 1.47i)16-s + (−2.52 + 1.45i)17-s + ⋯ |
L(s) = 1 | + (0.995 + 0.0943i)2-s + (0.600 − 0.799i)3-s + (0.982 + 0.187i)4-s + (−0.309 + 0.536i)5-s + (0.672 − 0.739i)6-s + (−0.789 + 0.613i)7-s + (0.960 + 0.279i)8-s + (−0.279 − 0.960i)9-s + (−0.358 + 0.504i)10-s + (−1.15 + 0.665i)11-s + (0.739 − 0.672i)12-s − 1.78i·13-s + (−0.843 + 0.536i)14-s + (0.243 + 0.569i)15-s + (0.929 + 0.369i)16-s + (−0.613 + 0.354i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 + 0.201i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.979 + 0.201i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.05212 - 0.208877i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.05212 - 0.208877i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.40 - 0.133i)T \) |
| 3 | \( 1 + (-1.03 + 1.38i)T \) |
| 7 | \( 1 + (2.08 - 1.62i)T \) |
good | 5 | \( 1 + (0.692 - 1.19i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (3.82 - 2.20i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 6.43iT - 13T^{2} \) |
| 17 | \( 1 + (2.52 - 1.45i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.58 + 2.75i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.84 - 3.19i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 6.67T + 29T^{2} \) |
| 31 | \( 1 + (2.17 - 1.25i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.00 - 2.88i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 0.497iT - 41T^{2} \) |
| 43 | \( 1 - 0.865T + 43T^{2} \) |
| 47 | \( 1 + (1.59 - 2.75i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.12 + 7.15i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.62 + 3.82i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.99 + 1.72i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.36 + 5.83i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 1.90T + 71T^{2} \) |
| 73 | \( 1 + (-3.23 - 5.60i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (1.65 + 0.953i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 7.00iT - 83T^{2} \) |
| 89 | \( 1 + (-8.22 - 4.75i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 1.19T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.94542147375776104418988063894, −12.23623381130520465618895371530, −11.00882670447874285913289513388, −9.889617177674507467150742904263, −8.228267470133032458370487326428, −7.41498456002291547978801374192, −6.41221993619698572154685828889, −5.25962541969046223343766985431, −3.29421648544679727924078174522, −2.57577872430886430191442501320,
2.64395545975944627537156500039, 3.99363868236579170423691693450, 4.75628245842784715182053556810, 6.25040461412674261131656102942, 7.57295638823530370417673069973, 8.799509390489343368914397451869, 10.01478027517234157869975973715, 10.85479871123460391500616368288, 11.93403230833559656678372307804, 13.08669367218865396584331138014