Properties

Label 2-1682-1.1-c1-0-25
Degree $2$
Conductor $1682$
Sign $-1$
Analytic cond. $13.4308$
Root an. cond. $3.66481$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3.41·3-s + 4-s + 1.61·5-s + 3.41·6-s − 1.52·7-s − 8-s + 8.67·9-s − 1.61·10-s − 1.89·11-s − 3.41·12-s − 3.18·13-s + 1.52·14-s − 5.52·15-s + 16-s + 1.69·17-s − 8.67·18-s + 3.67·19-s + 1.61·20-s + 5.19·21-s + 1.89·22-s − 2.69·23-s + 3.41·24-s − 2.39·25-s + 3.18·26-s − 19.4·27-s − 1.52·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.97·3-s + 0.5·4-s + 0.722·5-s + 1.39·6-s − 0.574·7-s − 0.353·8-s + 2.89·9-s − 0.510·10-s − 0.571·11-s − 0.986·12-s − 0.883·13-s + 0.406·14-s − 1.42·15-s + 0.250·16-s + 0.412·17-s − 2.04·18-s + 0.844·19-s + 0.361·20-s + 1.13·21-s + 0.404·22-s − 0.561·23-s + 0.697·24-s − 0.478·25-s + 0.624·26-s − 3.73·27-s − 0.287·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1682 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1682 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1682\)    =    \(2 \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(13.4308\)
Root analytic conductor: \(3.66481\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1682,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
29 \( 1 \)
good3 \( 1 + 3.41T + 3T^{2} \)
5 \( 1 - 1.61T + 5T^{2} \)
7 \( 1 + 1.52T + 7T^{2} \)
11 \( 1 + 1.89T + 11T^{2} \)
13 \( 1 + 3.18T + 13T^{2} \)
17 \( 1 - 1.69T + 17T^{2} \)
19 \( 1 - 3.67T + 19T^{2} \)
23 \( 1 + 2.69T + 23T^{2} \)
31 \( 1 - 1.78T + 31T^{2} \)
37 \( 1 - 7.07T + 37T^{2} \)
41 \( 1 - 5.03T + 41T^{2} \)
43 \( 1 - 1.89T + 43T^{2} \)
47 \( 1 + 2.57T + 47T^{2} \)
53 \( 1 - 8.24T + 53T^{2} \)
59 \( 1 - 2.95T + 59T^{2} \)
61 \( 1 - 7.74T + 61T^{2} \)
67 \( 1 - 2.47T + 67T^{2} \)
71 \( 1 - 6.06T + 71T^{2} \)
73 \( 1 + 3.74T + 73T^{2} \)
79 \( 1 + 9.22T + 79T^{2} \)
83 \( 1 + 5.52T + 83T^{2} \)
89 \( 1 + 15.9T + 89T^{2} \)
97 \( 1 + 14.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.491280252919751660318713113705, −7.923906410911647185758370628821, −7.20761301954186033087634011418, −6.47697304193846975504108272103, −5.70829067831697462114606752740, −5.28056377802281550576302211956, −4.12394005569430865376691996099, −2.50357072987484932210345331178, −1.19884447357088848587887105758, 0, 1.19884447357088848587887105758, 2.50357072987484932210345331178, 4.12394005569430865376691996099, 5.28056377802281550576302211956, 5.70829067831697462114606752740, 6.47697304193846975504108272103, 7.20761301954186033087634011418, 7.923906410911647185758370628821, 9.491280252919751660318713113705

Graph of the $Z$-function along the critical line