L(s) = 1 | + 2-s + 2.24·3-s + 4-s + 1.55·5-s + 2.24·6-s + 3.49·7-s + 8-s + 2.04·9-s + 1.55·10-s − 3.74·11-s + 2.24·12-s − 3.85·13-s + 3.49·14-s + 3.49·15-s + 16-s + 4.93·17-s + 2.04·18-s + 6.15·19-s + 1.55·20-s + 7.85·21-s − 3.74·22-s − 5.76·23-s + 2.24·24-s − 2.58·25-s − 3.85·26-s − 2.13·27-s + 3.49·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.29·3-s + 0.5·4-s + 0.695·5-s + 0.917·6-s + 1.32·7-s + 0.353·8-s + 0.682·9-s + 0.491·10-s − 1.12·11-s + 0.648·12-s − 1.06·13-s + 0.933·14-s + 0.902·15-s + 0.250·16-s + 1.19·17-s + 0.482·18-s + 1.41·19-s + 0.347·20-s + 1.71·21-s − 0.797·22-s − 1.20·23-s + 0.458·24-s − 0.516·25-s − 0.755·26-s − 0.411·27-s + 0.660·28-s + ⋯ |
Λ(s)=(=(1682s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1682s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.923152857 |
L(21) |
≈ |
4.923152857 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 29 | 1 |
good | 3 | 1−2.24T+3T2 |
| 5 | 1−1.55T+5T2 |
| 7 | 1−3.49T+7T2 |
| 11 | 1+3.74T+11T2 |
| 13 | 1+3.85T+13T2 |
| 17 | 1−4.93T+17T2 |
| 19 | 1−6.15T+19T2 |
| 23 | 1+5.76T+23T2 |
| 31 | 1+2.51T+31T2 |
| 37 | 1+6.78T+37T2 |
| 41 | 1+0.0271T+41T2 |
| 43 | 1−11.7T+43T2 |
| 47 | 1−0.554T+47T2 |
| 53 | 1−3.25T+53T2 |
| 59 | 1+3.06T+59T2 |
| 61 | 1+0.131T+61T2 |
| 67 | 1+11T+67T2 |
| 71 | 1+3.62T+71T2 |
| 73 | 1−6.62T+73T2 |
| 79 | 1+1.50T+79T2 |
| 83 | 1+9.96T+83T2 |
| 89 | 1−5.39T+89T2 |
| 97 | 1+4.31T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.436253820321982142678948813552, −8.343671427229291284966682989418, −7.62569224962550377882452005503, −7.43959448582500253927460332165, −5.65161625202525762540718433678, −5.37680658228399008509620060644, −4.32359227633140756332062589567, −3.21629652050587479329959357881, −2.41494598642847298886400091075, −1.66981753705387663269958363527,
1.66981753705387663269958363527, 2.41494598642847298886400091075, 3.21629652050587479329959357881, 4.32359227633140756332062589567, 5.37680658228399008509620060644, 5.65161625202525762540718433678, 7.43959448582500253927460332165, 7.62569224962550377882452005503, 8.343671427229291284966682989418, 9.436253820321982142678948813552