L(s) = 1 | + (−0.707 − 0.707i)2-s + (−0.0294 − 0.0709i)3-s + 1.00i·4-s + (−0.923 + 0.382i)5-s + (−0.0294 + 0.0709i)6-s + (3.48 + 1.44i)7-s + (0.707 − 0.707i)8-s + (2.11 − 2.11i)9-s + (0.923 + 0.382i)10-s + (1.39 − 3.37i)11-s + (0.0709 − 0.0294i)12-s + 4.29i·13-s + (−1.44 − 3.48i)14-s + (0.0543 + 0.0543i)15-s − 1.00·16-s + (2.96 − 2.86i)17-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + (−0.0169 − 0.0409i)3-s + 0.500i·4-s + (−0.413 + 0.171i)5-s + (−0.0120 + 0.0289i)6-s + (1.31 + 0.546i)7-s + (0.250 − 0.250i)8-s + (0.705 − 0.705i)9-s + (0.292 + 0.121i)10-s + (0.421 − 1.01i)11-s + (0.0204 − 0.00848i)12-s + 1.19i·13-s + (−0.386 − 0.932i)14-s + (0.0140 + 0.0140i)15-s − 0.250·16-s + (0.718 − 0.696i)17-s + ⋯ |
Λ(s)=(=(170s/2ΓC(s)L(s)(0.885+0.465i)Λ(2−s)
Λ(s)=(=(170s/2ΓC(s+1/2)L(s)(0.885+0.465i)Λ(1−s)
Degree: |
2 |
Conductor: |
170
= 2⋅5⋅17
|
Sign: |
0.885+0.465i
|
Analytic conductor: |
1.35745 |
Root analytic conductor: |
1.16509 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ170(151,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 170, ( :1/2), 0.885+0.465i)
|
Particular Values
L(1) |
≈ |
0.962118−0.237592i |
L(21) |
≈ |
0.962118−0.237592i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707+0.707i)T |
| 5 | 1+(0.923−0.382i)T |
| 17 | 1+(−2.96+2.86i)T |
good | 3 | 1+(0.0294+0.0709i)T+(−2.12+2.12i)T2 |
| 7 | 1+(−3.48−1.44i)T+(4.94+4.94i)T2 |
| 11 | 1+(−1.39+3.37i)T+(−7.77−7.77i)T2 |
| 13 | 1−4.29iT−13T2 |
| 19 | 1+(2.18+2.18i)T+19iT2 |
| 23 | 1+(2.47−5.98i)T+(−16.2−16.2i)T2 |
| 29 | 1+(−2.10+0.871i)T+(20.5−20.5i)T2 |
| 31 | 1+(−2.31−5.58i)T+(−21.9+21.9i)T2 |
| 37 | 1+(3.10+7.49i)T+(−26.1+26.1i)T2 |
| 41 | 1+(7.61+3.15i)T+(28.9+28.9i)T2 |
| 43 | 1+(7.80−7.80i)T−43iT2 |
| 47 | 1−8.27iT−47T2 |
| 53 | 1+(7.36+7.36i)T+53iT2 |
| 59 | 1+(3.39−3.39i)T−59iT2 |
| 61 | 1+(2.56+1.06i)T+(43.1+43.1i)T2 |
| 67 | 1−3.43T+67T2 |
| 71 | 1+(5.25+12.6i)T+(−50.2+50.2i)T2 |
| 73 | 1+(−10.9+4.53i)T+(51.6−51.6i)T2 |
| 79 | 1+(−1.15+2.80i)T+(−55.8−55.8i)T2 |
| 83 | 1+(1.30+1.30i)T+83iT2 |
| 89 | 1−9.64iT−89T2 |
| 97 | 1+(0.613−0.254i)T+(68.5−68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.18869462853600879718178528536, −11.68755064872605309689219219163, −10.95262382147450411212884691876, −9.557770404544890043202703891275, −8.725725171995849662238897941454, −7.72775018042051086988705359343, −6.52943823059306203441378910511, −4.82610255980682381290886194147, −3.48789258375340691781226307507, −1.57124505758041150929784473835,
1.62336883238961192903559128684, 4.24336063277552342083638138420, 5.15303798970325904065632917820, 6.80368706150279002961889988224, 7.996518555374194391316048728988, 8.227118791302506665496513562051, 10.14845623117433491917440763084, 10.45023426969981828487711011347, 11.81350673300795919821650299180, 12.81444158509702673141441832751