L(s) = 1 | + (−0.707 − 0.707i)2-s + (−0.0294 − 0.0709i)3-s + 1.00i·4-s + (−0.923 + 0.382i)5-s + (−0.0294 + 0.0709i)6-s + (3.48 + 1.44i)7-s + (0.707 − 0.707i)8-s + (2.11 − 2.11i)9-s + (0.923 + 0.382i)10-s + (1.39 − 3.37i)11-s + (0.0709 − 0.0294i)12-s + 4.29i·13-s + (−1.44 − 3.48i)14-s + (0.0543 + 0.0543i)15-s − 1.00·16-s + (2.96 − 2.86i)17-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + (−0.0169 − 0.0409i)3-s + 0.500i·4-s + (−0.413 + 0.171i)5-s + (−0.0120 + 0.0289i)6-s + (1.31 + 0.546i)7-s + (0.250 − 0.250i)8-s + (0.705 − 0.705i)9-s + (0.292 + 0.121i)10-s + (0.421 − 1.01i)11-s + (0.0204 − 0.00848i)12-s + 1.19i·13-s + (−0.386 − 0.932i)14-s + (0.0140 + 0.0140i)15-s − 0.250·16-s + (0.718 − 0.696i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.885 + 0.465i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.885 + 0.465i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.962118 - 0.237592i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.962118 - 0.237592i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 5 | \( 1 + (0.923 - 0.382i)T \) |
| 17 | \( 1 + (-2.96 + 2.86i)T \) |
good | 3 | \( 1 + (0.0294 + 0.0709i)T + (-2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (-3.48 - 1.44i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-1.39 + 3.37i)T + (-7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 - 4.29iT - 13T^{2} \) |
| 19 | \( 1 + (2.18 + 2.18i)T + 19iT^{2} \) |
| 23 | \( 1 + (2.47 - 5.98i)T + (-16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (-2.10 + 0.871i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (-2.31 - 5.58i)T + (-21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (3.10 + 7.49i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (7.61 + 3.15i)T + (28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (7.80 - 7.80i)T - 43iT^{2} \) |
| 47 | \( 1 - 8.27iT - 47T^{2} \) |
| 53 | \( 1 + (7.36 + 7.36i)T + 53iT^{2} \) |
| 59 | \( 1 + (3.39 - 3.39i)T - 59iT^{2} \) |
| 61 | \( 1 + (2.56 + 1.06i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 - 3.43T + 67T^{2} \) |
| 71 | \( 1 + (5.25 + 12.6i)T + (-50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (-10.9 + 4.53i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-1.15 + 2.80i)T + (-55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (1.30 + 1.30i)T + 83iT^{2} \) |
| 89 | \( 1 - 9.64iT - 89T^{2} \) |
| 97 | \( 1 + (0.613 - 0.254i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.18869462853600879718178528536, −11.68755064872605309689219219163, −10.95262382147450411212884691876, −9.557770404544890043202703891275, −8.725725171995849662238897941454, −7.72775018042051086988705359343, −6.52943823059306203441378910511, −4.82610255980682381290886194147, −3.48789258375340691781226307507, −1.57124505758041150929784473835,
1.62336883238961192903559128684, 4.24336063277552342083638138420, 5.15303798970325904065632917820, 6.80368706150279002961889988224, 7.996518555374194391316048728988, 8.227118791302506665496513562051, 10.14845623117433491917440763084, 10.45023426969981828487711011347, 11.81350673300795919821650299180, 12.81444158509702673141441832751