L(s) = 1 | + (−0.707 + 0.707i)2-s + (1.10 − 2.66i)3-s − 1.00i·4-s + (0.923 + 0.382i)5-s + (1.10 + 2.66i)6-s + (−0.0470 + 0.0194i)7-s + (0.707 + 0.707i)8-s + (−3.75 − 3.75i)9-s + (−0.923 + 0.382i)10-s + (0.307 + 0.743i)11-s + (−2.66 − 1.10i)12-s − 4.26i·13-s + (0.0194 − 0.0470i)14-s + (2.03 − 2.03i)15-s − 1.00·16-s + (2.43 − 3.32i)17-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (0.636 − 1.53i)3-s − 0.500i·4-s + (0.413 + 0.171i)5-s + (0.450 + 1.08i)6-s + (−0.0177 + 0.00736i)7-s + (0.250 + 0.250i)8-s + (−1.25 − 1.25i)9-s + (−0.292 + 0.121i)10-s + (0.0928 + 0.224i)11-s + (−0.768 − 0.318i)12-s − 1.18i·13-s + (0.00521 − 0.0125i)14-s + (0.526 − 0.526i)15-s − 0.250·16-s + (0.589 − 0.807i)17-s + ⋯ |
Λ(s)=(=(170s/2ΓC(s)L(s)(0.583+0.811i)Λ(2−s)
Λ(s)=(=(170s/2ΓC(s+1/2)L(s)(0.583+0.811i)Λ(1−s)
Degree: |
2 |
Conductor: |
170
= 2⋅5⋅17
|
Sign: |
0.583+0.811i
|
Analytic conductor: |
1.35745 |
Root analytic conductor: |
1.16509 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ170(161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 170, ( :1/2), 0.583+0.811i)
|
Particular Values
L(1) |
≈ |
1.00378−0.514592i |
L(21) |
≈ |
1.00378−0.514592i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 5 | 1+(−0.923−0.382i)T |
| 17 | 1+(−2.43+3.32i)T |
good | 3 | 1+(−1.10+2.66i)T+(−2.12−2.12i)T2 |
| 7 | 1+(0.0470−0.0194i)T+(4.94−4.94i)T2 |
| 11 | 1+(−0.307−0.743i)T+(−7.77+7.77i)T2 |
| 13 | 1+4.26iT−13T2 |
| 19 | 1+(4.53−4.53i)T−19iT2 |
| 23 | 1+(−3.28−7.94i)T+(−16.2+16.2i)T2 |
| 29 | 1+(−4.22−1.74i)T+(20.5+20.5i)T2 |
| 31 | 1+(0.189−0.456i)T+(−21.9−21.9i)T2 |
| 37 | 1+(−0.598+1.44i)T+(−26.1−26.1i)T2 |
| 41 | 1+(7.95−3.29i)T+(28.9−28.9i)T2 |
| 43 | 1+(−1.73−1.73i)T+43iT2 |
| 47 | 1−8.22iT−47T2 |
| 53 | 1+(−7.79+7.79i)T−53iT2 |
| 59 | 1+(−7.13−7.13i)T+59iT2 |
| 61 | 1+(5.73−2.37i)T+(43.1−43.1i)T2 |
| 67 | 1+0.822T+67T2 |
| 71 | 1+(−4.17+10.0i)T+(−50.2−50.2i)T2 |
| 73 | 1+(6.19+2.56i)T+(51.6+51.6i)T2 |
| 79 | 1+(3.14+7.59i)T+(−55.8+55.8i)T2 |
| 83 | 1+(0.955−0.955i)T−83iT2 |
| 89 | 1−17.0iT−89T2 |
| 97 | 1+(−2.95−1.22i)T+(68.5+68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.84605075232476612125572682832, −11.86456058815288171218458581910, −10.43796584817495533204618237238, −9.332936304217948410965715036238, −8.196699789367354289431387810666, −7.53684221611807908743618417985, −6.56775087292169688244473827815, −5.50708719406736682725578301598, −2.97996733739649117076777464069, −1.41454334829303442353464486078,
2.45527571290702436286840066973, 3.89767838821113505100559978046, 4.85370249421076868733338516836, 6.63229003810346678034683534522, 8.601939505941634414010430365802, 8.814017999416134368525780270385, 10.01781133679447388301152929318, 10.54780970509608502960671945735, 11.60105422447455780538154578291, 12.91364911305399727429821984824