L(s) = 1 | + (−0.382 − 0.923i)2-s + (−0.189 + 0.283i)3-s + (−0.707 + 0.707i)4-s + (1.79 + 1.32i)5-s + (0.334 + 0.0666i)6-s + (−0.701 + 3.52i)7-s + (0.923 + 0.382i)8-s + (1.10 + 2.66i)9-s + (0.540 − 2.16i)10-s + (0.940 − 4.72i)11-s + (−0.0666 − 0.334i)12-s − 1.94i·13-s + (3.52 − 0.701i)14-s + (−0.718 + 0.258i)15-s − i·16-s + (1.93 + 3.64i)17-s + ⋯ |
L(s) = 1 | + (−0.270 − 0.653i)2-s + (−0.109 + 0.163i)3-s + (−0.353 + 0.353i)4-s + (0.804 + 0.594i)5-s + (0.136 + 0.0271i)6-s + (−0.264 + 1.33i)7-s + (0.326 + 0.135i)8-s + (0.367 + 0.887i)9-s + (0.170 − 0.686i)10-s + (0.283 − 1.42i)11-s + (−0.0192 − 0.0966i)12-s − 0.538i·13-s + (0.941 − 0.187i)14-s + (−0.185 + 0.0666i)15-s − 0.250i·16-s + (0.468 + 0.883i)17-s + ⋯ |
Λ(s)=(=(170s/2ΓC(s)L(s)(0.976−0.216i)Λ(2−s)
Λ(s)=(=(170s/2ΓC(s+1/2)L(s)(0.976−0.216i)Λ(1−s)
Degree: |
2 |
Conductor: |
170
= 2⋅5⋅17
|
Sign: |
0.976−0.216i
|
Analytic conductor: |
1.35745 |
Root analytic conductor: |
1.16509 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ170(57,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 170, ( :1/2), 0.976−0.216i)
|
Particular Values
L(1) |
≈ |
1.05088+0.115274i |
L(21) |
≈ |
1.05088+0.115274i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.382+0.923i)T |
| 5 | 1+(−1.79−1.32i)T |
| 17 | 1+(−1.93−3.64i)T |
good | 3 | 1+(0.189−0.283i)T+(−1.14−2.77i)T2 |
| 7 | 1+(0.701−3.52i)T+(−6.46−2.67i)T2 |
| 11 | 1+(−0.940+4.72i)T+(−10.1−4.20i)T2 |
| 13 | 1+1.94iT−13T2 |
| 19 | 1+(−0.750+1.81i)T+(−13.4−13.4i)T2 |
| 23 | 1+(1.30−0.870i)T+(8.80−21.2i)T2 |
| 29 | 1+(−1.38+2.06i)T+(−11.0−26.7i)T2 |
| 31 | 1+(1.47+7.43i)T+(−28.6+11.8i)T2 |
| 37 | 1+(9.32+6.22i)T+(14.1+34.1i)T2 |
| 41 | 1+(−2.81−4.20i)T+(−15.6+37.8i)T2 |
| 43 | 1+(1.90−4.60i)T+(−30.4−30.4i)T2 |
| 47 | 1+5.22T+47T2 |
| 53 | 1+(−6.51+2.69i)T+(37.4−37.4i)T2 |
| 59 | 1+(−0.333+0.138i)T+(41.7−41.7i)T2 |
| 61 | 1+(−4.07+2.72i)T+(23.3−56.3i)T2 |
| 67 | 1+(−8.03+8.03i)T−67iT2 |
| 71 | 1+(−7.79+1.54i)T+(65.5−27.1i)T2 |
| 73 | 1+(3.19+16.0i)T+(−67.4+27.9i)T2 |
| 79 | 1+(16.8+3.34i)T+(72.9+30.2i)T2 |
| 83 | 1+(−1.13−2.74i)T+(−58.6+58.6i)T2 |
| 89 | 1+(−9.67+9.67i)T−89iT2 |
| 97 | 1+(−1.24−6.26i)T+(−89.6+37.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.83240819620084303402242882063, −11.60144542537565204450958329177, −10.80330109144958828093977448801, −9.916331706657368328753875830600, −8.945435419261279564053446096325, −7.927330657085038154008099201771, −6.16414598537608559351747783608, −5.37746117588323130298315188883, −3.36591525316520460297074542186, −2.14008188539804484405924630620,
1.32818921265181370590130651550, 4.03499802845743405195268873742, 5.20249075679800211366327018708, 6.80541433988191625623914553054, 7.10213463761212312185117257347, 8.744878254311385412246709426798, 9.829176411403294324119453827278, 10.17360930036263711368155906359, 12.01742644059468545479437248069, 12.79900967811055151799907923117