L(s) = 1 | + (−0.156 + 0.987i)2-s + (−0.951 − 0.309i)4-s + (−0.951 + 0.309i)5-s + (0.453 − 0.891i)8-s + (−0.987 + 0.156i)9-s + (−0.156 − 0.987i)10-s + (−0.734 − 0.533i)13-s + (0.809 + 0.587i)16-s + (0.587 − 0.809i)17-s − i·18-s + 20-s + (0.809 − 0.587i)25-s + (0.642 − 0.642i)26-s + (−0.152 − 1.93i)29-s + (−0.707 + 0.707i)32-s + ⋯ |
L(s) = 1 | + (−0.156 + 0.987i)2-s + (−0.951 − 0.309i)4-s + (−0.951 + 0.309i)5-s + (0.453 − 0.891i)8-s + (−0.987 + 0.156i)9-s + (−0.156 − 0.987i)10-s + (−0.734 − 0.533i)13-s + (0.809 + 0.587i)16-s + (0.587 − 0.809i)17-s − i·18-s + 20-s + (0.809 − 0.587i)25-s + (0.642 − 0.642i)26-s + (−0.152 − 1.93i)29-s + (−0.707 + 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.837 + 0.546i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.837 + 0.546i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4475136118\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4475136118\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.156 - 0.987i)T \) |
| 5 | \( 1 + (0.951 - 0.309i)T \) |
| 17 | \( 1 + (-0.587 + 0.809i)T \) |
good | 3 | \( 1 + (0.987 - 0.156i)T^{2} \) |
| 7 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 11 | \( 1 + (0.891 - 0.453i)T^{2} \) |
| 13 | \( 1 + (0.734 + 0.533i)T + (0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 23 | \( 1 + (-0.891 + 0.453i)T^{2} \) |
| 29 | \( 1 + (0.152 + 1.93i)T + (-0.987 + 0.156i)T^{2} \) |
| 31 | \( 1 + (-0.156 + 0.987i)T^{2} \) |
| 37 | \( 1 + (-1.65 - 0.398i)T + (0.891 + 0.453i)T^{2} \) |
| 41 | \( 1 + (0.678 + 1.10i)T + (-0.453 + 0.891i)T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (0.809 + 1.58i)T + (-0.587 + 0.809i)T^{2} \) |
| 59 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 61 | \( 1 + (1.47 - 0.355i)T + (0.891 - 0.453i)T^{2} \) |
| 67 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 71 | \( 1 + (-0.987 + 0.156i)T^{2} \) |
| 73 | \( 1 + (-1.70 - 1.04i)T + (0.453 + 0.891i)T^{2} \) |
| 79 | \( 1 + (-0.156 - 0.987i)T^{2} \) |
| 83 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
| 89 | \( 1 + (-0.183 - 0.253i)T + (-0.309 + 0.951i)T^{2} \) |
| 97 | \( 1 + (-1.04 + 0.0819i)T + (0.987 - 0.156i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.402190789253013735996695668107, −8.209222315077690750705044482081, −8.010096287574154643724402043946, −7.19615383789917107806842717841, −6.33011986735033216411654473308, −5.44107354805166303661383394022, −4.70126971792462970312153583549, −3.66773852836896879621540260379, −2.66301666039660477451592423566, −0.38918764602838744874940965603,
1.36702451386486016297676511654, 2.80571160727100382348653681224, 3.51644639758850623918155467888, 4.50283765212201168111905084458, 5.20532648779213072476315172581, 6.35267410311366254381686768548, 7.65472362103919808691679564798, 8.076665530767715228733437189611, 9.031992587070554457544887103388, 9.427869986604661473746570776095