L(s) = 1 | + (−0.156 + 0.987i)2-s + (−0.951 − 0.309i)4-s + (−0.951 + 0.309i)5-s + (0.453 − 0.891i)8-s + (−0.987 + 0.156i)9-s + (−0.156 − 0.987i)10-s + (−0.734 − 0.533i)13-s + (0.809 + 0.587i)16-s + (0.587 − 0.809i)17-s − i·18-s + 20-s + (0.809 − 0.587i)25-s + (0.642 − 0.642i)26-s + (−0.152 − 1.93i)29-s + (−0.707 + 0.707i)32-s + ⋯ |
L(s) = 1 | + (−0.156 + 0.987i)2-s + (−0.951 − 0.309i)4-s + (−0.951 + 0.309i)5-s + (0.453 − 0.891i)8-s + (−0.987 + 0.156i)9-s + (−0.156 − 0.987i)10-s + (−0.734 − 0.533i)13-s + (0.809 + 0.587i)16-s + (0.587 − 0.809i)17-s − i·18-s + 20-s + (0.809 − 0.587i)25-s + (0.642 − 0.642i)26-s + (−0.152 − 1.93i)29-s + (−0.707 + 0.707i)32-s + ⋯ |
Λ(s)=(=(1700s/2ΓC(s)L(s)(0.837+0.546i)Λ(1−s)
Λ(s)=(=(1700s/2ΓC(s)L(s)(0.837+0.546i)Λ(1−s)
Degree: |
2 |
Conductor: |
1700
= 22⋅52⋅17
|
Sign: |
0.837+0.546i
|
Analytic conductor: |
0.848410 |
Root analytic conductor: |
0.921092 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1700(1239,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1700, ( :0), 0.837+0.546i)
|
Particular Values
L(21) |
≈ |
0.4475136118 |
L(21) |
≈ |
0.4475136118 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.156−0.987i)T |
| 5 | 1+(0.951−0.309i)T |
| 17 | 1+(−0.587+0.809i)T |
good | 3 | 1+(0.987−0.156i)T2 |
| 7 | 1+(0.707+0.707i)T2 |
| 11 | 1+(0.891−0.453i)T2 |
| 13 | 1+(0.734+0.533i)T+(0.309+0.951i)T2 |
| 19 | 1+(0.587+0.809i)T2 |
| 23 | 1+(−0.891+0.453i)T2 |
| 29 | 1+(0.152+1.93i)T+(−0.987+0.156i)T2 |
| 31 | 1+(−0.156+0.987i)T2 |
| 37 | 1+(−1.65−0.398i)T+(0.891+0.453i)T2 |
| 41 | 1+(0.678+1.10i)T+(−0.453+0.891i)T2 |
| 43 | 1−iT2 |
| 47 | 1+(0.809+0.587i)T2 |
| 53 | 1+(0.809+1.58i)T+(−0.587+0.809i)T2 |
| 59 | 1+(−0.951+0.309i)T2 |
| 61 | 1+(1.47−0.355i)T+(0.891−0.453i)T2 |
| 67 | 1+(−0.809+0.587i)T2 |
| 71 | 1+(−0.987+0.156i)T2 |
| 73 | 1+(−1.70−1.04i)T+(0.453+0.891i)T2 |
| 79 | 1+(−0.156−0.987i)T2 |
| 83 | 1+(−0.587−0.809i)T2 |
| 89 | 1+(−0.183−0.253i)T+(−0.309+0.951i)T2 |
| 97 | 1+(−1.04+0.0819i)T+(0.987−0.156i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.402190789253013735996695668107, −8.209222315077690750705044482081, −8.010096287574154643724402043946, −7.19615383789917107806842717841, −6.33011986735033216411654473308, −5.44107354805166303661383394022, −4.70126971792462970312153583549, −3.66773852836896879621540260379, −2.66301666039660477451592423566, −0.38918764602838744874940965603,
1.36702451386486016297676511654, 2.80571160727100382348653681224, 3.51644639758850623918155467888, 4.50283765212201168111905084458, 5.20532648779213072476315172581, 6.35267410311366254381686768548, 7.65472362103919808691679564798, 8.076665530767715228733437189611, 9.031992587070554457544887103388, 9.427869986604661473746570776095