L(s) = 1 | + (−0.996 − 0.0784i)2-s + (0.987 + 0.156i)4-s + (0.233 − 0.972i)5-s + (−0.972 − 0.233i)8-s + (0.649 − 0.760i)9-s + (−0.309 + 0.951i)10-s + (0.322 − 0.993i)13-s + (0.951 + 0.309i)16-s + (−0.987 − 0.156i)17-s + (−0.707 + 0.707i)18-s + (0.382 − 0.923i)20-s + (−0.891 − 0.453i)25-s + (−0.399 + 0.965i)26-s + (0.0984 + 0.213i)29-s + (−0.923 − 0.382i)32-s + ⋯ |
L(s) = 1 | + (−0.996 − 0.0784i)2-s + (0.987 + 0.156i)4-s + (0.233 − 0.972i)5-s + (−0.972 − 0.233i)8-s + (0.649 − 0.760i)9-s + (−0.309 + 0.951i)10-s + (0.322 − 0.993i)13-s + (0.951 + 0.309i)16-s + (−0.987 − 0.156i)17-s + (−0.707 + 0.707i)18-s + (0.382 − 0.923i)20-s + (−0.891 − 0.453i)25-s + (−0.399 + 0.965i)26-s + (0.0984 + 0.213i)29-s + (−0.923 − 0.382i)32-s + ⋯ |
Λ(s)=(=(1700s/2ΓC(s)L(s)(−0.0231+0.999i)Λ(1−s)
Λ(s)=(=(1700s/2ΓC(s)L(s)(−0.0231+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
1700
= 22⋅52⋅17
|
Sign: |
−0.0231+0.999i
|
Analytic conductor: |
0.848410 |
Root analytic conductor: |
0.921092 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1700(1467,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1700, ( :0), −0.0231+0.999i)
|
Particular Values
L(21) |
≈ |
0.7346316130 |
L(21) |
≈ |
0.7346316130 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.996+0.0784i)T |
| 5 | 1+(−0.233+0.972i)T |
| 17 | 1+(0.987+0.156i)T |
good | 3 | 1+(−0.649+0.760i)T2 |
| 7 | 1+(0.382+0.923i)T2 |
| 11 | 1+(0.852+0.522i)T2 |
| 13 | 1+(−0.322+0.993i)T+(−0.809−0.587i)T2 |
| 19 | 1+(−0.891−0.453i)T2 |
| 23 | 1+(−0.522+0.852i)T2 |
| 29 | 1+(−0.0984−0.213i)T+(−0.649+0.760i)T2 |
| 31 | 1+(−0.996−0.0784i)T2 |
| 37 | 1+(−0.473−0.265i)T+(0.522+0.852i)T2 |
| 41 | 1+(0.831+0.0984i)T+(0.972+0.233i)T2 |
| 43 | 1+(0.707−0.707i)T2 |
| 47 | 1+(0.309−0.951i)T2 |
| 53 | 1+(0.453−0.108i)T+(0.891−0.453i)T2 |
| 59 | 1+(−0.156−0.987i)T2 |
| 61 | 1+(−0.916−1.63i)T+(−0.522+0.852i)T2 |
| 67 | 1+(−0.951+0.309i)T2 |
| 71 | 1+(−0.760−0.649i)T2 |
| 73 | 1+(−0.0486+0.0616i)T+(−0.233−0.972i)T2 |
| 79 | 1+(0.996−0.0784i)T2 |
| 83 | 1+(−0.453+0.891i)T2 |
| 89 | 1+(−0.690+1.35i)T+(−0.587−0.809i)T2 |
| 97 | 1+(−1.63−0.603i)T+(0.760+0.649i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.256910990375064246238947225754, −8.653251332635037685192634490648, −7.992854057391472718331419695804, −7.03807783951414100123849514344, −6.28493641790589486322975363989, −5.39916530846693251942847457135, −4.27837085611380528909269129353, −3.19228968529958719625287581219, −1.89601992062369554032376323186, −0.790077141867558966896586057069,
1.72991124010168544348519011316, 2.43412002997145877748232174260, 3.67764352335201610649192486485, 4.85175908585683672975056477803, 6.14329901629636612452447311143, 6.66805970225962176343153532106, 7.37439763746551409002586795325, 8.119442327443998737559756807442, 9.029132275987728047619814637390, 9.751590460515881259123362486492