L(s) = 1 | + (−0.996 − 0.0784i)2-s + (0.987 + 0.156i)4-s + (0.233 − 0.972i)5-s + (−0.972 − 0.233i)8-s + (0.649 − 0.760i)9-s + (−0.309 + 0.951i)10-s + (0.322 − 0.993i)13-s + (0.951 + 0.309i)16-s + (−0.987 − 0.156i)17-s + (−0.707 + 0.707i)18-s + (0.382 − 0.923i)20-s + (−0.891 − 0.453i)25-s + (−0.399 + 0.965i)26-s + (0.0984 + 0.213i)29-s + (−0.923 − 0.382i)32-s + ⋯ |
L(s) = 1 | + (−0.996 − 0.0784i)2-s + (0.987 + 0.156i)4-s + (0.233 − 0.972i)5-s + (−0.972 − 0.233i)8-s + (0.649 − 0.760i)9-s + (−0.309 + 0.951i)10-s + (0.322 − 0.993i)13-s + (0.951 + 0.309i)16-s + (−0.987 − 0.156i)17-s + (−0.707 + 0.707i)18-s + (0.382 − 0.923i)20-s + (−0.891 − 0.453i)25-s + (−0.399 + 0.965i)26-s + (0.0984 + 0.213i)29-s + (−0.923 − 0.382i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0231 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0231 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7346316130\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7346316130\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.996 + 0.0784i)T \) |
| 5 | \( 1 + (-0.233 + 0.972i)T \) |
| 17 | \( 1 + (0.987 + 0.156i)T \) |
good | 3 | \( 1 + (-0.649 + 0.760i)T^{2} \) |
| 7 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 11 | \( 1 + (0.852 + 0.522i)T^{2} \) |
| 13 | \( 1 + (-0.322 + 0.993i)T + (-0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.891 - 0.453i)T^{2} \) |
| 23 | \( 1 + (-0.522 + 0.852i)T^{2} \) |
| 29 | \( 1 + (-0.0984 - 0.213i)T + (-0.649 + 0.760i)T^{2} \) |
| 31 | \( 1 + (-0.996 - 0.0784i)T^{2} \) |
| 37 | \( 1 + (-0.473 - 0.265i)T + (0.522 + 0.852i)T^{2} \) |
| 41 | \( 1 + (0.831 + 0.0984i)T + (0.972 + 0.233i)T^{2} \) |
| 43 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (0.453 - 0.108i)T + (0.891 - 0.453i)T^{2} \) |
| 59 | \( 1 + (-0.156 - 0.987i)T^{2} \) |
| 61 | \( 1 + (-0.916 - 1.63i)T + (-0.522 + 0.852i)T^{2} \) |
| 67 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 71 | \( 1 + (-0.760 - 0.649i)T^{2} \) |
| 73 | \( 1 + (-0.0486 + 0.0616i)T + (-0.233 - 0.972i)T^{2} \) |
| 79 | \( 1 + (0.996 - 0.0784i)T^{2} \) |
| 83 | \( 1 + (-0.453 + 0.891i)T^{2} \) |
| 89 | \( 1 + (-0.690 + 1.35i)T + (-0.587 - 0.809i)T^{2} \) |
| 97 | \( 1 + (-1.63 - 0.603i)T + (0.760 + 0.649i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.256910990375064246238947225754, −8.653251332635037685192634490648, −7.992854057391472718331419695804, −7.03807783951414100123849514344, −6.28493641790589486322975363989, −5.39916530846693251942847457135, −4.27837085611380528909269129353, −3.19228968529958719625287581219, −1.89601992062369554032376323186, −0.790077141867558966896586057069,
1.72991124010168544348519011316, 2.43412002997145877748232174260, 3.67764352335201610649192486485, 4.85175908585683672975056477803, 6.14329901629636612452447311143, 6.66805970225962176343153532106, 7.37439763746551409002586795325, 8.119442327443998737559756807442, 9.029132275987728047619814637390, 9.751590460515881259123362486492