Properties

Label 2-1710-1.1-c1-0-6
Degree $2$
Conductor $1710$
Sign $1$
Analytic cond. $13.6544$
Root an. cond. $3.69518$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s − 3.12·7-s + 8-s − 10-s + 2·11-s + 4·13-s − 3.12·14-s + 16-s + 3.12·17-s − 19-s − 20-s + 2·22-s + 25-s + 4·26-s − 3.12·28-s − 2·29-s + 9.12·31-s + 32-s + 3.12·34-s + 3.12·35-s − 38-s − 40-s − 5.12·41-s + 10.2·43-s + 2·44-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 0.447·5-s − 1.18·7-s + 0.353·8-s − 0.316·10-s + 0.603·11-s + 1.10·13-s − 0.834·14-s + 0.250·16-s + 0.757·17-s − 0.229·19-s − 0.223·20-s + 0.426·22-s + 0.200·25-s + 0.784·26-s − 0.590·28-s − 0.371·29-s + 1.63·31-s + 0.176·32-s + 0.535·34-s + 0.527·35-s − 0.162·38-s − 0.158·40-s − 0.800·41-s + 1.56·43-s + 0.301·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1710\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(13.6544\)
Root analytic conductor: \(3.69518\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1710,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.409643911\)
\(L(\frac12)\) \(\approx\) \(2.409643911\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
19 \( 1 + T \)
good7 \( 1 + 3.12T + 7T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 - 4T + 13T^{2} \)
17 \( 1 - 3.12T + 17T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 - 9.12T + 31T^{2} \)
37 \( 1 + 37T^{2} \)
41 \( 1 + 5.12T + 41T^{2} \)
43 \( 1 - 10.2T + 43T^{2} \)
47 \( 1 - 10.2T + 47T^{2} \)
53 \( 1 + 4.24T + 53T^{2} \)
59 \( 1 + 3.12T + 59T^{2} \)
61 \( 1 - 12.2T + 61T^{2} \)
67 \( 1 - 6.24T + 67T^{2} \)
71 \( 1 - 6.24T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 - 9.12T + 79T^{2} \)
83 \( 1 - 6.87T + 83T^{2} \)
89 \( 1 + 11.3T + 89T^{2} \)
97 \( 1 + 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.377066340388711656351793919491, −8.505170069146041669368657992845, −7.64656640993540486062457393481, −6.63283353310251304038819269910, −6.23941617932906518089671523408, −5.29048096807453615851225433327, −4.05195296127906493418242332683, −3.59658785251440597450313424611, −2.61640077576820863844940973511, −1.00477982265802441032029886721, 1.00477982265802441032029886721, 2.61640077576820863844940973511, 3.59658785251440597450313424611, 4.05195296127906493418242332683, 5.29048096807453615851225433327, 6.23941617932906518089671523408, 6.63283353310251304038819269910, 7.64656640993540486062457393481, 8.505170069146041669368657992845, 9.377066340388711656351793919491

Graph of the $Z$-function along the critical line