L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−2.12 − 0.707i)5-s + (2 + 2i)7-s + (0.707 + 0.707i)8-s + (2 − 0.999i)10-s − 2.82i·11-s + (−3 + 3i)13-s − 2.82·14-s − 1.00·16-s − i·19-s + (−0.707 + 2.12i)20-s + (2.00 + 2.00i)22-s + (−5.65 − 5.65i)23-s + (3.99 + 3i)25-s − 4.24i·26-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s − 0.500i·4-s + (−0.948 − 0.316i)5-s + (0.755 + 0.755i)7-s + (0.250 + 0.250i)8-s + (0.632 − 0.316i)10-s − 0.852i·11-s + (−0.832 + 0.832i)13-s − 0.755·14-s − 0.250·16-s − 0.229i·19-s + (−0.158 + 0.474i)20-s + (0.426 + 0.426i)22-s + (−1.17 − 1.17i)23-s + (0.799 + 0.600i)25-s − 0.832i·26-s + ⋯ |
Λ(s)=(=(1710s/2ΓC(s)L(s)(0.0618+0.998i)Λ(2−s)
Λ(s)=(=(1710s/2ΓC(s+1/2)L(s)(0.0618+0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
1710
= 2⋅32⋅5⋅19
|
Sign: |
0.0618+0.998i
|
Analytic conductor: |
13.6544 |
Root analytic conductor: |
3.69518 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1710(647,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1710, ( :1/2), 0.0618+0.998i)
|
Particular Values
L(1) |
≈ |
0.5486501571 |
L(21) |
≈ |
0.5486501571 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 3 | 1 |
| 5 | 1+(2.12+0.707i)T |
| 19 | 1+iT |
good | 7 | 1+(−2−2i)T+7iT2 |
| 11 | 1+2.82iT−11T2 |
| 13 | 1+(3−3i)T−13iT2 |
| 17 | 1−17iT2 |
| 23 | 1+(5.65+5.65i)T+23iT2 |
| 29 | 1−7.07T+29T2 |
| 31 | 1−4T+31T2 |
| 37 | 1+(3+3i)T+37iT2 |
| 41 | 1+1.41iT−41T2 |
| 43 | 1+(6−6i)T−43iT2 |
| 47 | 1+(5.65−5.65i)T−47iT2 |
| 53 | 1+(5.65+5.65i)T+53iT2 |
| 59 | 1−5.65T+59T2 |
| 61 | 1+4T+61T2 |
| 67 | 1+(8+8i)T+67iT2 |
| 71 | 1+5.65iT−71T2 |
| 73 | 1+(−9+9i)T−73iT2 |
| 79 | 1+16iT−79T2 |
| 83 | 1+83iT2 |
| 89 | 1+18.3T+89T2 |
| 97 | 1+(−7−7i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.839417723646397479043885564023, −8.322478198215168674013965784683, −7.84570857926723419564519456230, −6.78550936239116545886388740767, −6.07488761495743712451534246407, −4.88589990782095366600428767675, −4.49713307020630503630312822573, −3.05451318120014190496143404888, −1.81876391460743089314822041401, −0.26833607439626720332224403975,
1.22459535314453097559706804559, 2.51162161977308223877613774447, 3.58668152028716469566935709833, 4.39743288766483528255034956020, 5.17479640671696858050285887082, 6.68136747619906058427825735993, 7.41651333384420294403234307465, 7.954912004530892733170248703252, 8.506657923211663301721676259995, 9.957681796342704104628062666306