L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (2.12 + 0.707i)5-s + (−1 − i)7-s + (−0.707 − 0.707i)8-s + (2 − 0.999i)10-s − 1.41i·11-s − 1.41·14-s − 1.00·16-s + (4.24 − 4.24i)17-s − i·19-s + (0.707 − 2.12i)20-s + (−1.00 − 1.00i)22-s + (1.41 + 1.41i)23-s + (3.99 + 3i)25-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s − 0.500i·4-s + (0.948 + 0.316i)5-s + (−0.377 − 0.377i)7-s + (−0.250 − 0.250i)8-s + (0.632 − 0.316i)10-s − 0.426i·11-s − 0.377·14-s − 0.250·16-s + (1.02 − 1.02i)17-s − 0.229i·19-s + (0.158 − 0.474i)20-s + (−0.213 − 0.213i)22-s + (0.294 + 0.294i)23-s + (0.799 + 0.600i)25-s + ⋯ |
Λ(s)=(=(1710s/2ΓC(s)L(s)(0.0618+0.998i)Λ(2−s)
Λ(s)=(=(1710s/2ΓC(s+1/2)L(s)(0.0618+0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
1710
= 2⋅32⋅5⋅19
|
Sign: |
0.0618+0.998i
|
Analytic conductor: |
13.6544 |
Root analytic conductor: |
3.69518 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1710(647,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1710, ( :1/2), 0.0618+0.998i)
|
Particular Values
L(1) |
≈ |
2.538170131 |
L(21) |
≈ |
2.538170131 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707+0.707i)T |
| 3 | 1 |
| 5 | 1+(−2.12−0.707i)T |
| 19 | 1+iT |
good | 7 | 1+(1+i)T+7iT2 |
| 11 | 1+1.41iT−11T2 |
| 13 | 1−13iT2 |
| 17 | 1+(−4.24+4.24i)T−17iT2 |
| 23 | 1+(−1.41−1.41i)T+23iT2 |
| 29 | 1+2.82T+29T2 |
| 31 | 1−4T+31T2 |
| 37 | 1+(6+6i)T+37iT2 |
| 41 | 1+11.3iT−41T2 |
| 43 | 1+(−3+3i)T−43iT2 |
| 47 | 1+(7.07−7.07i)T−47iT2 |
| 53 | 1+(−1.41−1.41i)T+53iT2 |
| 59 | 1−2.82T+59T2 |
| 61 | 1−14T+61T2 |
| 67 | 1+(−10−10i)T+67iT2 |
| 71 | 1−5.65iT−71T2 |
| 73 | 1+(−9+9i)T−73iT2 |
| 79 | 1−8iT−79T2 |
| 83 | 1+(8.48+8.48i)T+83iT2 |
| 89 | 1+11.3T+89T2 |
| 97 | 1+(2+2i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.456599040807511140730493778546, −8.539127281055136789539518396463, −7.25845146536437158454766347716, −6.74152729175077164329176548004, −5.59054812089198710346927697970, −5.28560865616001553825914489152, −3.91289098322957608326858064397, −3.10512220287165935691542739355, −2.19032876562780736365635104749, −0.858124759171857129207347469440,
1.47792363691069479629498611550, 2.66256432474343768382093817764, 3.67350454609545778902984369394, 4.81610720643524675242852432074, 5.48913057530040719556746272320, 6.27362563583692284590641822610, 6.83682133418243437488109277221, 8.065799252071138023024565827372, 8.533601358640846305929352890154, 9.713070339289918673006798671498