Properties

Label 2-1734-1.1-c3-0-104
Degree $2$
Conductor $1734$
Sign $-1$
Analytic cond. $102.309$
Root an. cond. $10.1148$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3·3-s + 4·4-s + 14.6·5-s + 6·6-s + 12.1·7-s − 8·8-s + 9·9-s − 29.2·10-s − 19.6·11-s − 12·12-s + 9.08·13-s − 24.3·14-s − 43.8·15-s + 16·16-s − 18·18-s − 56.4·19-s + 58.5·20-s − 36.4·21-s + 39.2·22-s + 119.·23-s + 24·24-s + 89.1·25-s − 18.1·26-s − 27·27-s + 48.6·28-s − 98.5·29-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s + 1.30·5-s + 0.408·6-s + 0.656·7-s − 0.353·8-s + 0.333·9-s − 0.925·10-s − 0.537·11-s − 0.288·12-s + 0.193·13-s − 0.464·14-s − 0.755·15-s + 0.250·16-s − 0.235·18-s − 0.681·19-s + 0.654·20-s − 0.379·21-s + 0.380·22-s + 1.08·23-s + 0.204·24-s + 0.713·25-s − 0.137·26-s − 0.192·27-s + 0.328·28-s − 0.631·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1734\)    =    \(2 \cdot 3 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(102.309\)
Root analytic conductor: \(10.1148\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1734,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
3 \( 1 + 3T \)
17 \( 1 \)
good5 \( 1 - 14.6T + 125T^{2} \)
7 \( 1 - 12.1T + 343T^{2} \)
11 \( 1 + 19.6T + 1.33e3T^{2} \)
13 \( 1 - 9.08T + 2.19e3T^{2} \)
19 \( 1 + 56.4T + 6.85e3T^{2} \)
23 \( 1 - 119.T + 1.21e4T^{2} \)
29 \( 1 + 98.5T + 2.43e4T^{2} \)
31 \( 1 - 48.3T + 2.97e4T^{2} \)
37 \( 1 - 1.86T + 5.06e4T^{2} \)
41 \( 1 + 385.T + 6.89e4T^{2} \)
43 \( 1 + 420.T + 7.95e4T^{2} \)
47 \( 1 + 300.T + 1.03e5T^{2} \)
53 \( 1 + 491.T + 1.48e5T^{2} \)
59 \( 1 - 450.T + 2.05e5T^{2} \)
61 \( 1 + 683.T + 2.26e5T^{2} \)
67 \( 1 + 394.T + 3.00e5T^{2} \)
71 \( 1 + 73.1T + 3.57e5T^{2} \)
73 \( 1 - 706.T + 3.89e5T^{2} \)
79 \( 1 - 587.T + 4.93e5T^{2} \)
83 \( 1 + 1.32e3T + 5.71e5T^{2} \)
89 \( 1 - 1.10e3T + 7.04e5T^{2} \)
97 \( 1 + 312.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.609124903893718058697980246602, −7.893369084358209257053816870363, −6.83394333028547051436333933346, −6.26407355415293424689878621402, −5.34679140480882080573843806708, −4.77677624681017848047569975927, −3.20261306253635515138626722000, −2.00890389901125882025926916243, −1.39165642838734712795446036768, 0, 1.39165642838734712795446036768, 2.00890389901125882025926916243, 3.20261306253635515138626722000, 4.77677624681017848047569975927, 5.34679140480882080573843806708, 6.26407355415293424689878621402, 6.83394333028547051436333933346, 7.893369084358209257053816870363, 8.609124903893718058697980246602

Graph of the $Z$-function along the critical line