Properties

Label 2-1734-1.1-c3-0-112
Degree $2$
Conductor $1734$
Sign $-1$
Analytic cond. $102.309$
Root an. cond. $10.1148$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·3-s + 4·4-s + 2.31·5-s − 6·6-s + 20.8·7-s − 8·8-s + 9·9-s − 4.62·10-s − 3.68·11-s + 12·12-s − 86.3·13-s − 41.7·14-s + 6.94·15-s + 16·16-s − 18·18-s + 5.54·19-s + 9.25·20-s + 62.6·21-s + 7.37·22-s + 42.5·23-s − 24·24-s − 119.·25-s + 172.·26-s + 27·27-s + 83.4·28-s + 109.·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.206·5-s − 0.408·6-s + 1.12·7-s − 0.353·8-s + 0.333·9-s − 0.146·10-s − 0.101·11-s + 0.288·12-s − 1.84·13-s − 0.796·14-s + 0.119·15-s + 0.250·16-s − 0.235·18-s + 0.0669·19-s + 0.103·20-s + 0.650·21-s + 0.0714·22-s + 0.385·23-s − 0.204·24-s − 0.957·25-s + 1.30·26-s + 0.192·27-s + 0.563·28-s + 0.699·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1734\)    =    \(2 \cdot 3 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(102.309\)
Root analytic conductor: \(10.1148\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1734,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
3 \( 1 - 3T \)
17 \( 1 \)
good5 \( 1 - 2.31T + 125T^{2} \)
7 \( 1 - 20.8T + 343T^{2} \)
11 \( 1 + 3.68T + 1.33e3T^{2} \)
13 \( 1 + 86.3T + 2.19e3T^{2} \)
19 \( 1 - 5.54T + 6.85e3T^{2} \)
23 \( 1 - 42.5T + 1.21e4T^{2} \)
29 \( 1 - 109.T + 2.43e4T^{2} \)
31 \( 1 - 64.7T + 2.97e4T^{2} \)
37 \( 1 - 205.T + 5.06e4T^{2} \)
41 \( 1 + 243.T + 6.89e4T^{2} \)
43 \( 1 + 485.T + 7.95e4T^{2} \)
47 \( 1 + 69.6T + 1.03e5T^{2} \)
53 \( 1 + 490.T + 1.48e5T^{2} \)
59 \( 1 + 526.T + 2.05e5T^{2} \)
61 \( 1 + 718.T + 2.26e5T^{2} \)
67 \( 1 - 538.T + 3.00e5T^{2} \)
71 \( 1 + 100.T + 3.57e5T^{2} \)
73 \( 1 - 506.T + 3.89e5T^{2} \)
79 \( 1 - 719.T + 4.93e5T^{2} \)
83 \( 1 + 1.38e3T + 5.71e5T^{2} \)
89 \( 1 + 271.T + 7.04e5T^{2} \)
97 \( 1 - 303.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.407158666728680633400905787577, −7.918168257215368827302206268871, −7.28631348230577837574800889943, −6.37132815182401254086108177191, −5.10927538906281446417719226778, −4.57986980996899387907696847233, −3.13735203400396803637372399991, −2.23816244700810328243993378867, −1.45262260292723218825438112082, 0, 1.45262260292723218825438112082, 2.23816244700810328243993378867, 3.13735203400396803637372399991, 4.57986980996899387907696847233, 5.10927538906281446417719226778, 6.37132815182401254086108177191, 7.28631348230577837574800889943, 7.918168257215368827302206268871, 8.407158666728680633400905787577

Graph of the $Z$-function along the critical line