L(s) = 1 | + i·2-s + (−0.707 − 0.707i)3-s − 4-s + (2.82 + 2.82i)5-s + (0.707 − 0.707i)6-s + (1.41 − 1.41i)7-s − i·8-s + 1.00i·9-s + (−2.82 + 2.82i)10-s + (0.707 + 0.707i)12-s + 6·13-s + (1.41 + 1.41i)14-s − 4.00i·15-s + 16-s − 1.00·18-s − 4i·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + (−0.408 − 0.408i)3-s − 0.5·4-s + (1.26 + 1.26i)5-s + (0.288 − 0.288i)6-s + (0.534 − 0.534i)7-s − 0.353i·8-s + 0.333i·9-s + (−0.894 + 0.894i)10-s + (0.204 + 0.204i)12-s + 1.66·13-s + (0.377 + 0.377i)14-s − 1.03i·15-s + 0.250·16-s − 0.235·18-s − 0.917i·19-s + ⋯ |
Λ(s)=(=(1734s/2ΓC(s)L(s)(0.638−0.769i)Λ(2−s)
Λ(s)=(=(1734s/2ΓC(s+1/2)L(s)(0.638−0.769i)Λ(1−s)
Degree: |
2 |
Conductor: |
1734
= 2⋅3⋅172
|
Sign: |
0.638−0.769i
|
Analytic conductor: |
13.8460 |
Root analytic conductor: |
3.72102 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1734(829,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1734, ( :1/2), 0.638−0.769i)
|
Particular Values
L(1) |
≈ |
2.118779878 |
L(21) |
≈ |
2.118779878 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1+(0.707+0.707i)T |
| 17 | 1 |
good | 5 | 1+(−2.82−2.82i)T+5iT2 |
| 7 | 1+(−1.41+1.41i)T−7iT2 |
| 11 | 1−11iT2 |
| 13 | 1−6T+13T2 |
| 19 | 1+4iT−19T2 |
| 23 | 1+(−4.24+4.24i)T−23iT2 |
| 29 | 1+(−2.82−2.82i)T+29iT2 |
| 31 | 1+(4.24+4.24i)T+31iT2 |
| 37 | 1+(2.82+2.82i)T+37iT2 |
| 41 | 1+(−7.07+7.07i)T−41iT2 |
| 43 | 1+4iT−43T2 |
| 47 | 1+4T+47T2 |
| 53 | 1−2iT−53T2 |
| 59 | 1−12iT−59T2 |
| 61 | 1+(−2.82+2.82i)T−61iT2 |
| 67 | 1+12T+67T2 |
| 71 | 1+(4.24+4.24i)T+71iT2 |
| 73 | 1+(1.41+1.41i)T+73iT2 |
| 79 | 1+(−7.07+7.07i)T−79iT2 |
| 83 | 1−12iT−83T2 |
| 89 | 1−2T+89T2 |
| 97 | 1+(4.24+4.24i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.234046011541761291967308079457, −8.686502994507477111413620248978, −7.45864331393173838062733459929, −6.99979779680319481542775363663, −6.20650363944950140985794417729, −5.76276538350345169889763579322, −4.71968002831761964485574728916, −3.51693811816339145109280867160, −2.34655988128672462293583320183, −1.11855930563323365891349631285,
1.18716447005332026001439736456, 1.74716469390857506638793077964, 3.21448737995741067852110916425, 4.32562108031942184072451296094, 5.15822150412737318690895925776, 5.69248826812880945939162036030, 6.39696254576639840421097014132, 8.092885864477195071309509803214, 8.678749113935464235375355975593, 9.284296117231742558428266471757