Properties

Label 2-1734-17.16-c1-0-36
Degree $2$
Conductor $1734$
Sign $-0.970 - 0.242i$
Analytic cond. $13.8460$
Root an. cond. $3.72102$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s i·3-s + 4-s + 2i·5-s + i·6-s − 8-s − 9-s − 2i·10-s − 4i·11-s i·12-s − 2·13-s + 2·15-s + 16-s + 18-s − 4·19-s + 2i·20-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577i·3-s + 0.5·4-s + 0.894i·5-s + 0.408i·6-s − 0.353·8-s − 0.333·9-s − 0.632i·10-s − 1.20i·11-s − 0.288i·12-s − 0.554·13-s + 0.516·15-s + 0.250·16-s + 0.235·18-s − 0.917·19-s + 0.447i·20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.970 - 0.242i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.970 - 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1734\)    =    \(2 \cdot 3 \cdot 17^{2}\)
Sign: $-0.970 - 0.242i$
Analytic conductor: \(13.8460\)
Root analytic conductor: \(3.72102\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1734} (577, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(1\)
Selberg data: \((2,\ 1734,\ (\ :1/2),\ -0.970 - 0.242i)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + iT \)
17 \( 1 \)
good5 \( 1 - 2iT - 5T^{2} \)
7 \( 1 - 7T^{2} \)
11 \( 1 + 4iT - 11T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 - 23T^{2} \)
29 \( 1 - 10iT - 29T^{2} \)
31 \( 1 + 8iT - 31T^{2} \)
37 \( 1 - 2iT - 37T^{2} \)
41 \( 1 - 10iT - 41T^{2} \)
43 \( 1 + 12T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 + 12T + 59T^{2} \)
61 \( 1 + 10iT - 61T^{2} \)
67 \( 1 + 12T + 67T^{2} \)
71 \( 1 - 71T^{2} \)
73 \( 1 + 10iT - 73T^{2} \)
79 \( 1 + 8iT - 79T^{2} \)
83 \( 1 + 4T + 83T^{2} \)
89 \( 1 + 6T + 89T^{2} \)
97 \( 1 - 14iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.780335538845723747815883561169, −8.099035156557818667115623743402, −7.36640210656233403252744450253, −6.53071028041173935888121967469, −6.09997107027575999209746548857, −4.88089984248490371332633681887, −3.37270404614000534435414361942, −2.73718349619107287341725545787, −1.53145053578433420290544987660, 0, 1.61730430388947983317664254113, 2.66795200858653271220835373618, 4.10371494679489060674602657297, 4.74903973721194273586276255785, 5.62162483568493530275223343667, 6.72187031728737423164665189200, 7.48720674231698928069959600385, 8.433760468622332108854992008419, 8.933761392799839826898100758992

Graph of the $Z$-function along the critical line