Properties

Label 2-175-1.1-c7-0-21
Degree $2$
Conductor $175$
Sign $-1$
Analytic cond. $54.6673$
Root an. cond. $7.39373$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 18.2·2-s − 80.5·3-s + 204.·4-s + 1.46e3·6-s − 343·7-s − 1.38e3·8-s + 4.29e3·9-s − 6.26e3·11-s − 1.64e4·12-s − 4.90e3·13-s + 6.25e3·14-s − 822.·16-s − 3.37e4·17-s − 7.83e4·18-s + 4.11e4·19-s + 2.76e4·21-s + 1.14e5·22-s + 7.86e3·23-s + 1.11e5·24-s + 8.93e4·26-s − 1.70e5·27-s − 7.00e4·28-s − 5.52e4·29-s + 5.96e3·31-s + 1.92e5·32-s + 5.04e5·33-s + 6.14e5·34-s + ⋯
L(s)  = 1  − 1.61·2-s − 1.72·3-s + 1.59·4-s + 2.77·6-s − 0.377·7-s − 0.959·8-s + 1.96·9-s − 1.41·11-s − 2.74·12-s − 0.619·13-s + 0.608·14-s − 0.0501·16-s − 1.66·17-s − 3.16·18-s + 1.37·19-s + 0.650·21-s + 2.28·22-s + 0.134·23-s + 1.65·24-s + 0.997·26-s − 1.66·27-s − 0.602·28-s − 0.420·29-s + 0.0359·31-s + 1.03·32-s + 2.44·33-s + 2.68·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(54.6673\)
Root analytic conductor: \(7.39373\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 175,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 + 343T \)
good2 \( 1 + 18.2T + 128T^{2} \)
3 \( 1 + 80.5T + 2.18e3T^{2} \)
11 \( 1 + 6.26e3T + 1.94e7T^{2} \)
13 \( 1 + 4.90e3T + 6.27e7T^{2} \)
17 \( 1 + 3.37e4T + 4.10e8T^{2} \)
19 \( 1 - 4.11e4T + 8.93e8T^{2} \)
23 \( 1 - 7.86e3T + 3.40e9T^{2} \)
29 \( 1 + 5.52e4T + 1.72e10T^{2} \)
31 \( 1 - 5.96e3T + 2.75e10T^{2} \)
37 \( 1 - 6.14e4T + 9.49e10T^{2} \)
41 \( 1 - 3.64e5T + 1.94e11T^{2} \)
43 \( 1 - 3.60e5T + 2.71e11T^{2} \)
47 \( 1 - 6.26e5T + 5.06e11T^{2} \)
53 \( 1 - 1.34e6T + 1.17e12T^{2} \)
59 \( 1 + 1.85e6T + 2.48e12T^{2} \)
61 \( 1 + 1.04e6T + 3.14e12T^{2} \)
67 \( 1 - 3.68e6T + 6.06e12T^{2} \)
71 \( 1 + 9.36e5T + 9.09e12T^{2} \)
73 \( 1 - 2.28e6T + 1.10e13T^{2} \)
79 \( 1 + 2.78e6T + 1.92e13T^{2} \)
83 \( 1 + 1.44e6T + 2.71e13T^{2} \)
89 \( 1 - 9.36e6T + 4.42e13T^{2} \)
97 \( 1 + 9.67e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.79541264782947173068571441514, −10.06010536836611853952349418238, −9.146200352443663941554428710589, −7.65252794918649991411918844489, −6.97279173765458260543251745051, −5.81286721366198387124679830385, −4.71853613760315620980805919237, −2.35250660479193596483008769541, −0.78341659149201767975791179923, 0, 0.78341659149201767975791179923, 2.35250660479193596483008769541, 4.71853613760315620980805919237, 5.81286721366198387124679830385, 6.97279173765458260543251745051, 7.65252794918649991411918844489, 9.146200352443663941554428710589, 10.06010536836611853952349418238, 10.79541264782947173068571441514

Graph of the $Z$-function along the critical line