Properties

Label 2-175-175.103-c3-0-22
Degree $2$
Conductor $175$
Sign $0.755 + 0.654i$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4.61 − 0.241i)2-s + (1.85 + 2.29i)3-s + (13.3 + 1.39i)4-s + (−10.3 + 4.28i)5-s + (−8.00 − 11.0i)6-s + (−16.5 + 8.39i)7-s + (−24.5 − 3.88i)8-s + (3.80 − 17.9i)9-s + (48.7 − 17.2i)10-s + (12.7 − 2.71i)11-s + (21.4 + 33.0i)12-s + (−54.2 − 27.6i)13-s + (78.2 − 34.7i)14-s + (−28.9 − 15.7i)15-s + (7.70 + 1.63i)16-s + (27.3 + 71.3i)17-s + ⋯
L(s)  = 1  + (−1.63 − 0.0855i)2-s + (0.356 + 0.440i)3-s + (1.66 + 0.174i)4-s + (−0.923 + 0.382i)5-s + (−0.544 − 0.749i)6-s + (−0.891 + 0.453i)7-s + (−1.08 − 0.171i)8-s + (0.141 − 0.663i)9-s + (1.54 − 0.545i)10-s + (0.350 − 0.0744i)11-s + (0.516 + 0.795i)12-s + (−1.15 − 0.589i)13-s + (1.49 − 0.663i)14-s + (−0.498 − 0.270i)15-s + (0.120 + 0.0255i)16-s + (0.390 + 1.01i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.755 + 0.654i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.755 + 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $0.755 + 0.654i$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ 0.755 + 0.654i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.424621 - 0.158335i\)
\(L(\frac12)\) \(\approx\) \(0.424621 - 0.158335i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (10.3 - 4.28i)T \)
7 \( 1 + (16.5 - 8.39i)T \)
good2 \( 1 + (4.61 + 0.241i)T + (7.95 + 0.836i)T^{2} \)
3 \( 1 + (-1.85 - 2.29i)T + (-5.61 + 26.4i)T^{2} \)
11 \( 1 + (-12.7 + 2.71i)T + (1.21e3 - 541. i)T^{2} \)
13 \( 1 + (54.2 + 27.6i)T + (1.29e3 + 1.77e3i)T^{2} \)
17 \( 1 + (-27.3 - 71.3i)T + (-3.65e3 + 3.28e3i)T^{2} \)
19 \( 1 + (-3.44 - 32.7i)T + (-6.70e3 + 1.42e3i)T^{2} \)
23 \( 1 + (-0.176 + 3.36i)T + (-1.21e4 - 1.27e3i)T^{2} \)
29 \( 1 + (39.3 - 54.2i)T + (-7.53e3 - 2.31e4i)T^{2} \)
31 \( 1 + (-111. + 249. i)T + (-1.99e4 - 2.21e4i)T^{2} \)
37 \( 1 + (-200. + 130. i)T + (2.06e4 - 4.62e4i)T^{2} \)
41 \( 1 + (-354. + 115. i)T + (5.57e4 - 4.05e4i)T^{2} \)
43 \( 1 + (251. + 251. i)T + 7.95e4iT^{2} \)
47 \( 1 + (-402. - 154. i)T + (7.71e4 + 6.94e4i)T^{2} \)
53 \( 1 + (455. - 368. i)T + (3.09e4 - 1.45e5i)T^{2} \)
59 \( 1 + (-302. + 335. i)T + (-2.14e4 - 2.04e5i)T^{2} \)
61 \( 1 + (-320. + 288. i)T + (2.37e4 - 2.25e5i)T^{2} \)
67 \( 1 + (-43.9 + 16.8i)T + (2.23e5 - 2.01e5i)T^{2} \)
71 \( 1 + (87.7 + 63.7i)T + (1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (-4.65 + 7.16i)T + (-1.58e5 - 3.55e5i)T^{2} \)
79 \( 1 + (80.1 + 179. i)T + (-3.29e5 + 3.66e5i)T^{2} \)
83 \( 1 + (-76.1 + 480. i)T + (-5.43e5 - 1.76e5i)T^{2} \)
89 \( 1 + (103. + 114. i)T + (-7.36e4 + 7.01e5i)T^{2} \)
97 \( 1 + (-48.3 - 305. i)T + (-8.68e5 + 2.82e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.94645341654321201538198934721, −10.75215326685813890894056169859, −9.881047324990058401923495424221, −9.256569556098918036290548302696, −8.202621540907179782891352317703, −7.34464313655892987259230590860, −6.20099044474994205665195237330, −3.93536884489887145786368715548, −2.67451455455544107504545507196, −0.44561815509314583255583088748, 0.958477582637067680815211833952, 2.71391087817698486718601806270, 4.62174280098992441348600087143, 6.87681848174228235728126944337, 7.35597727447212039998661547635, 8.255730082440652051897233685704, 9.310353231041596471635318673382, 10.01054790913820241582654772024, 11.20822609134682940403327360747, 12.11082728193748672727585367409

Graph of the $Z$-function along the critical line