L(s) = 1 | + (−1.21 − 0.0635i)2-s + (3.22 + 3.97i)3-s + (−6.49 − 0.682i)4-s + (8.85 + 6.81i)5-s + (−3.65 − 5.03i)6-s + (10.7 − 15.0i)7-s + (17.4 + 2.75i)8-s + (0.160 − 0.756i)9-s + (−10.3 − 8.83i)10-s + (25.0 − 5.33i)11-s + (−18.2 − 28.0i)12-s + (2.21 + 1.12i)13-s + (−13.9 + 17.6i)14-s + (1.41 + 57.2i)15-s + (30.1 + 6.40i)16-s + (6.65 + 17.3i)17-s + ⋯ |
L(s) = 1 | + (−0.428 − 0.0224i)2-s + (0.620 + 0.765i)3-s + (−0.811 − 0.0852i)4-s + (0.792 + 0.609i)5-s + (−0.248 − 0.342i)6-s + (0.579 − 0.814i)7-s + (0.769 + 0.121i)8-s + (0.00595 − 0.0280i)9-s + (−0.325 − 0.279i)10-s + (0.687 − 0.146i)11-s + (−0.437 − 0.674i)12-s + (0.0471 + 0.0240i)13-s + (−0.266 + 0.336i)14-s + (0.0242 + 0.985i)15-s + (0.470 + 0.100i)16-s + (0.0950 + 0.247i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.687−0.725i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(0.687−0.725i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.687−0.725i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), 0.687−0.725i)
|
Particular Values
L(2) |
≈ |
1.64103+0.705573i |
L(21) |
≈ |
1.64103+0.705573i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−8.85−6.81i)T |
| 7 | 1+(−10.7+15.0i)T |
good | 2 | 1+(1.21+0.0635i)T+(7.95+0.836i)T2 |
| 3 | 1+(−3.22−3.97i)T+(−5.61+26.4i)T2 |
| 11 | 1+(−25.0+5.33i)T+(1.21e3−541.i)T2 |
| 13 | 1+(−2.21−1.12i)T+(1.29e3+1.77e3i)T2 |
| 17 | 1+(−6.65−17.3i)T+(−3.65e3+3.28e3i)T2 |
| 19 | 1+(−13.6−130.i)T+(−6.70e3+1.42e3i)T2 |
| 23 | 1+(−1.98+37.9i)T+(−1.21e4−1.27e3i)T2 |
| 29 | 1+(27.5−37.9i)T+(−7.53e3−2.31e4i)T2 |
| 31 | 1+(45.2−101.i)T+(−1.99e4−2.21e4i)T2 |
| 37 | 1+(96.5−62.7i)T+(2.06e4−4.62e4i)T2 |
| 41 | 1+(−463.+150.i)T+(5.57e4−4.05e4i)T2 |
| 43 | 1+(−91.2−91.2i)T+7.95e4iT2 |
| 47 | 1+(−201.−77.3i)T+(7.71e4+6.94e4i)T2 |
| 53 | 1+(232.−187.i)T+(3.09e4−1.45e5i)T2 |
| 59 | 1+(313.−348.i)T+(−2.14e4−2.04e5i)T2 |
| 61 | 1+(−490.+441.i)T+(2.37e4−2.25e5i)T2 |
| 67 | 1+(142.−54.7i)T+(2.23e5−2.01e5i)T2 |
| 71 | 1+(557.+405.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(−108.+167.i)T+(−1.58e5−3.55e5i)T2 |
| 79 | 1+(528.+1.18e3i)T+(−3.29e5+3.66e5i)T2 |
| 83 | 1+(60.7−383.i)T+(−5.43e5−1.76e5i)T2 |
| 89 | 1+(1.00e3+1.11e3i)T+(−7.36e4+7.01e5i)T2 |
| 97 | 1+(−84.4−533.i)T+(−8.68e5+2.82e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.48341416802050044296175256205, −10.84943205535323643748933454558, −10.21047963491905501778713655585, −9.444148337357982271833843477075, −8.596625233756386875221916585550, −7.43216373637957795082602225309, −5.93020965300431613268351961489, −4.43383125010698695010298193138, −3.50272746605721708017582947447, −1.40166099214814650338166074264,
1.13536167196453605742406021270, 2.39607049301448930895729096845, 4.53269030032997146632199740623, 5.59088717755688551333891935591, 7.19391733006182759610561493126, 8.278411450619936149278449454068, 9.012545293731224465911568573384, 9.610450185089172640797664761405, 11.14820050028182932562657175608, 12.45097514040212413090144606350