L(s) = 1 | + (−1.93 − 0.203i)2-s + (−0.500 + 2.35i)3-s + (1.75 + 0.373i)4-s + (−0.306 + 2.21i)5-s + (1.45 − 4.46i)6-s + (−2.52 + 0.802i)7-s + (0.377 + 0.122i)8-s + (−2.56 − 1.14i)9-s + (1.04 − 4.22i)10-s + (2.26 − 1.00i)11-s + (−1.76 + 3.95i)12-s + (−2.29 − 3.16i)13-s + (5.04 − 1.04i)14-s + (−5.06 − 1.83i)15-s + (−3.98 − 1.77i)16-s + (−2.30 + 2.07i)17-s + ⋯ |
L(s) = 1 | + (−1.37 − 0.144i)2-s + (−0.289 + 1.36i)3-s + (0.878 + 0.186i)4-s + (−0.137 + 0.990i)5-s + (0.592 − 1.82i)6-s + (−0.952 + 0.303i)7-s + (0.133 + 0.0433i)8-s + (−0.854 − 0.380i)9-s + (0.330 − 1.33i)10-s + (0.683 − 0.304i)11-s + (−0.508 + 1.14i)12-s + (−0.637 − 0.876i)13-s + (1.34 − 0.278i)14-s + (−1.30 − 0.472i)15-s + (−0.997 − 0.443i)16-s + (−0.558 + 0.502i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(−0.987+0.157i)Λ(2−s)
Λ(s)=(=(175s/2ΓC(s+1/2)L(s)(−0.987+0.157i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
−0.987+0.157i
|
Analytic conductor: |
1.39738 |
Root analytic conductor: |
1.18210 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :1/2), −0.987+0.157i)
|
Particular Values
L(1) |
≈ |
0.0220152−0.277325i |
L(21) |
≈ |
0.0220152−0.277325i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.306−2.21i)T |
| 7 | 1+(2.52−0.802i)T |
good | 2 | 1+(1.93+0.203i)T+(1.95+0.415i)T2 |
| 3 | 1+(0.500−2.35i)T+(−2.74−1.22i)T2 |
| 11 | 1+(−2.26+1.00i)T+(7.36−8.17i)T2 |
| 13 | 1+(2.29+3.16i)T+(−4.01+12.3i)T2 |
| 17 | 1+(2.30−2.07i)T+(1.77−16.9i)T2 |
| 19 | 1+(5.00−1.06i)T+(17.3−7.72i)T2 |
| 23 | 1+(−4.53−0.476i)T+(22.4+4.78i)T2 |
| 29 | 1+(0.797+2.45i)T+(−23.4+17.0i)T2 |
| 31 | 1+(−4.22−4.68i)T+(−3.24+30.8i)T2 |
| 37 | 1+(−3.31+7.45i)T+(−24.7−27.4i)T2 |
| 41 | 1+(4.21−3.06i)T+(12.6−38.9i)T2 |
| 43 | 1−5.80iT−43T2 |
| 47 | 1+(1.61+1.45i)T+(4.91+46.7i)T2 |
| 53 | 1+(1.59−7.51i)T+(−48.4−21.5i)T2 |
| 59 | 1+(−1.15−10.9i)T+(−57.7+12.2i)T2 |
| 61 | 1+(0.904−8.60i)T+(−59.6−12.6i)T2 |
| 67 | 1+(6.37−5.73i)T+(7.00−66.6i)T2 |
| 71 | 1+(−4.36−13.4i)T+(−57.4+41.7i)T2 |
| 73 | 1+(5.00+11.2i)T+(−48.8+54.2i)T2 |
| 79 | 1+(4.18−4.64i)T+(−8.25−78.5i)T2 |
| 83 | 1+(4.78+1.55i)T+(67.1+48.7i)T2 |
| 89 | 1+(−1.45+13.8i)T+(−87.0−18.5i)T2 |
| 97 | 1+(−4.30+1.39i)T+(78.4−57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.12032663179534705741128062024, −11.66440954314056532569330769147, −10.66251076640813573904393715394, −10.28778477419286522511078935707, −9.434152473644546413389739906349, −8.584596368519048995415364905433, −7.16393189746003631845950389847, −6.00563367557171652209663636521, −4.27315562640448709378033269198, −2.86434998435255576309442903969,
0.40408292363842818713151899360, 1.86447933462948192018786262382, 4.51365107214742066804641230000, 6.57067602543534170820778710031, 6.95862914668735823054224758928, 8.130507436446994962723549901074, 9.099976160287067659101188505294, 9.778669961186532460850247794936, 11.26608343130505456841609132538, 12.21614996041467291788905158993