L(s) = 1 | + (−1.61 + 0.0848i)2-s + (1.71 − 2.12i)3-s + (0.622 − 0.0653i)4-s + (−2.19 + 0.449i)5-s + (−2.60 + 3.58i)6-s + (−0.156 − 2.64i)7-s + (2.19 − 0.348i)8-s + (−0.927 − 4.36i)9-s + (3.50 − 0.912i)10-s + (−3.84 − 0.816i)11-s + (0.930 − 1.43i)12-s + (−0.0865 + 0.0441i)13-s + (0.476 + 4.26i)14-s + (−2.81 + 5.42i)15-s + (−4.75 + 1.01i)16-s + (−1.20 + 3.12i)17-s + ⋯ |
L(s) = 1 | + (−1.14 + 0.0599i)2-s + (0.992 − 1.22i)3-s + (0.311 − 0.0326i)4-s + (−0.979 + 0.200i)5-s + (−1.06 + 1.46i)6-s + (−0.0590 − 0.998i)7-s + (0.777 − 0.123i)8-s + (−0.309 − 1.45i)9-s + (1.10 − 0.288i)10-s + (−1.15 − 0.246i)11-s + (0.268 − 0.413i)12-s + (−0.0240 + 0.0122i)13-s + (0.127 + 1.13i)14-s + (−0.726 + 1.40i)15-s + (−1.18 + 0.252i)16-s + (−0.291 + 0.758i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(−0.650+0.759i)Λ(2−s)
Λ(s)=(=(175s/2ΓC(s+1/2)L(s)(−0.650+0.759i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
−0.650+0.759i
|
Analytic conductor: |
1.39738 |
Root analytic conductor: |
1.18210 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :1/2), −0.650+0.759i)
|
Particular Values
L(1) |
≈ |
0.245892−0.534418i |
L(21) |
≈ |
0.245892−0.534418i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(2.19−0.449i)T |
| 7 | 1+(0.156+2.64i)T |
good | 2 | 1+(1.61−0.0848i)T+(1.98−0.209i)T2 |
| 3 | 1+(−1.71+2.12i)T+(−0.623−2.93i)T2 |
| 11 | 1+(3.84+0.816i)T+(10.0+4.47i)T2 |
| 13 | 1+(0.0865−0.0441i)T+(7.64−10.5i)T2 |
| 17 | 1+(1.20−3.12i)T+(−12.6−11.3i)T2 |
| 19 | 1+(−0.637+6.06i)T+(−18.5−3.95i)T2 |
| 23 | 1+(0.274+5.23i)T+(−22.8+2.40i)T2 |
| 29 | 1+(−2.51−3.45i)T+(−8.96+27.5i)T2 |
| 31 | 1+(0.287+0.644i)T+(−20.7+23.0i)T2 |
| 37 | 1+(−6.47−4.20i)T+(15.0+33.8i)T2 |
| 41 | 1+(−0.124−0.0405i)T+(33.1+24.0i)T2 |
| 43 | 1+(−8.25+8.25i)T−43iT2 |
| 47 | 1+(−2.52+0.970i)T+(34.9−31.4i)T2 |
| 53 | 1+(−9.13−7.40i)T+(11.0+51.8i)T2 |
| 59 | 1+(3.45+3.83i)T+(−6.16+58.6i)T2 |
| 61 | 1+(−5.30−4.77i)T+(6.37+60.6i)T2 |
| 67 | 1+(0.521+0.200i)T+(49.7+44.8i)T2 |
| 71 | 1+(−0.818+0.594i)T+(21.9−67.5i)T2 |
| 73 | 1+(1.16+1.78i)T+(−29.6+66.6i)T2 |
| 79 | 1+(6.28−14.1i)T+(−52.8−58.7i)T2 |
| 83 | 1+(1.69+10.6i)T+(−78.9+25.6i)T2 |
| 89 | 1+(0.671−0.745i)T+(−9.30−88.5i)T2 |
| 97 | 1+(−1.77+11.1i)T+(−92.2−29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.60053693523658359875899137985, −11.06022124121242538530456019794, −10.35100931284804131817473100001, −8.834994876578255259352785140992, −8.225944984093883477973071196389, −7.43454353063621751289141090794, −6.87190228515827188607691936518, −4.33175903075558180590606434754, −2.68702647272042775487611078696, −0.71544412926689194672832178930,
2.64316838740287633915573303706, 4.11155813620891829886366045723, 5.25428453878943160595979614933, 7.69384260101516957106440280985, 8.165093970987205626388230943505, 9.142098206965386804367483985567, 9.746441421036981997590479370168, 10.70004848626941954287720432121, 11.76120108834835600436593433991, 13.08092034749992921466873928581