L(s) = 1 | + (−4.92 + 0.257i)2-s + (6.01 − 7.43i)3-s + (16.2 − 1.70i)4-s + (10.4 − 4.02i)5-s + (−27.7 + 38.1i)6-s + (−17.0 + 7.18i)7-s + (−40.4 + 6.40i)8-s + (−13.3 − 63.0i)9-s + (−50.3 + 22.4i)10-s + (−36.2 − 7.69i)11-s + (84.8 − 130. i)12-s + (−55.0 + 28.0i)13-s + (82.1 − 39.7i)14-s + (32.8 − 101. i)15-s + (69.7 − 14.8i)16-s + (−22.1 + 57.7i)17-s + ⋯ |
L(s) = 1 | + (−1.74 + 0.0912i)2-s + (1.15 − 1.43i)3-s + (2.02 − 0.212i)4-s + (0.933 − 0.359i)5-s + (−1.88 + 2.59i)6-s + (−0.921 + 0.388i)7-s + (−1.78 + 0.282i)8-s + (−0.496 − 2.33i)9-s + (−1.59 + 0.711i)10-s + (−0.992 − 0.210i)11-s + (2.04 − 3.14i)12-s + (−1.17 + 0.598i)13-s + (1.56 − 0.759i)14-s + (0.566 − 1.75i)15-s + (1.08 − 0.231i)16-s + (−0.316 + 0.823i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(−0.999−0.0373i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(−0.999−0.0373i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
−0.999−0.0373i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), −0.999−0.0373i)
|
Particular Values
L(2) |
≈ |
0.0118615+0.634902i |
L(21) |
≈ |
0.0118615+0.634902i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−10.4+4.02i)T |
| 7 | 1+(17.0−7.18i)T |
good | 2 | 1+(4.92−0.257i)T+(7.95−0.836i)T2 |
| 3 | 1+(−6.01+7.43i)T+(−5.61−26.4i)T2 |
| 11 | 1+(36.2+7.69i)T+(1.21e3+541.i)T2 |
| 13 | 1+(55.0−28.0i)T+(1.29e3−1.77e3i)T2 |
| 17 | 1+(22.1−57.7i)T+(−3.65e3−3.28e3i)T2 |
| 19 | 1+(−10.8+103.i)T+(−6.70e3−1.42e3i)T2 |
| 23 | 1+(−1.82−34.8i)T+(−1.21e4+1.27e3i)T2 |
| 29 | 1+(31.4+43.3i)T+(−7.53e3+2.31e4i)T2 |
| 31 | 1+(118.+267.i)T+(−1.99e4+2.21e4i)T2 |
| 37 | 1+(39.8+25.8i)T+(2.06e4+4.62e4i)T2 |
| 41 | 1+(−33.6−10.9i)T+(5.57e4+4.05e4i)T2 |
| 43 | 1+(−155.+155.i)T−7.95e4iT2 |
| 47 | 1+(161.−62.1i)T+(7.71e4−6.94e4i)T2 |
| 53 | 1+(−33.8−27.3i)T+(3.09e4+1.45e5i)T2 |
| 59 | 1+(−270.−300.i)T+(−2.14e4+2.04e5i)T2 |
| 61 | 1+(−323.−290.i)T+(2.37e4+2.25e5i)T2 |
| 67 | 1+(−161.−61.9i)T+(2.23e5+2.01e5i)T2 |
| 71 | 1+(258.−187.i)T+(1.10e5−3.40e5i)T2 |
| 73 | 1+(426.+657.i)T+(−1.58e5+3.55e5i)T2 |
| 79 | 1+(−350.+786.i)T+(−3.29e5−3.66e5i)T2 |
| 83 | 1+(27.2+172.i)T+(−5.43e5+1.76e5i)T2 |
| 89 | 1+(−426.+473.i)T+(−7.36e4−7.01e5i)T2 |
| 97 | 1+(−234.+1.48e3i)T+(−8.68e5−2.82e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.75746244781932107397343265225, −10.20128145833379688138927944342, −9.257719145812341874294388622862, −8.891611777615834784530473623380, −7.73559375962770525579563273578, −6.98586516657973673310936040685, −6.01031221353963607827422799172, −2.61594902929862288685182932213, −2.03734825586936992995347149462, −0.39178014286763846273097831274,
2.33033921624057747447532650367, 3.16248654212963464212977112626, 5.20485423768531611588139923541, 7.04301529369881375847089702964, 8.004835651401623457978948376805, 9.101532314694259653586075702127, 9.832382948607493089554442896044, 10.17256445105658024789138433071, 10.83030494746350303286683873103, 12.75475150763315007551139933398