L(s) = 1 | + (1.37 + 0.792i)2-s + (4.54 − 2.62i)3-s + (−2.74 − 4.75i)4-s + 8.31·6-s + (17.8 − 5.10i)7-s − 21.3i·8-s + (0.242 − 0.420i)9-s + (−14.0 − 24.3i)11-s + (−24.9 − 14.3i)12-s + 3.85i·13-s + (28.4 + 7.10i)14-s + (−4.98 + 8.63i)16-s + (33.2 − 19.1i)17-s + (0.666 − 0.384i)18-s + (58.3 − 101. i)19-s + ⋯ |
L(s) = 1 | + (0.485 + 0.280i)2-s + (0.873 − 0.504i)3-s + (−0.342 − 0.593i)4-s + 0.565·6-s + (0.961 − 0.275i)7-s − 0.945i·8-s + (0.00898 − 0.0155i)9-s + (−0.385 − 0.668i)11-s + (−0.599 − 0.345i)12-s + 0.0823i·13-s + (0.544 + 0.135i)14-s + (−0.0778 + 0.134i)16-s + (0.474 − 0.273i)17-s + (0.00872 − 0.00503i)18-s + (0.704 − 1.22i)19-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.391+0.920i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(0.391+0.920i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.391+0.920i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), 0.391+0.920i)
|
Particular Values
L(2) |
≈ |
2.27927−1.50657i |
L(21) |
≈ |
2.27927−1.50657i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1+(−17.8+5.10i)T |
good | 2 | 1+(−1.37−0.792i)T+(4+6.92i)T2 |
| 3 | 1+(−4.54+2.62i)T+(13.5−23.3i)T2 |
| 11 | 1+(14.0+24.3i)T+(−665.5+1.15e3i)T2 |
| 13 | 1−3.85iT−2.19e3T2 |
| 17 | 1+(−33.2+19.1i)T+(2.45e3−4.25e3i)T2 |
| 19 | 1+(−58.3+101.i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(152.+88.2i)T+(6.08e3+1.05e4i)T2 |
| 29 | 1−209.T+2.43e4T2 |
| 31 | 1+(−103.−179.i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(−13.5−7.83i)T+(2.53e4+4.38e4i)T2 |
| 41 | 1+10.5T+6.89e4T2 |
| 43 | 1−325.iT−7.95e4T2 |
| 47 | 1+(−163.−94.2i)T+(5.19e4+8.99e4i)T2 |
| 53 | 1+(−238.+137.i)T+(7.44e4−1.28e5i)T2 |
| 59 | 1+(−21.9−37.9i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(427.−740.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(472.−272.i)T+(1.50e5−2.60e5i)T2 |
| 71 | 1−1.02e3T+3.57e5T2 |
| 73 | 1+(−218.+126.i)T+(1.94e5−3.36e5i)T2 |
| 79 | 1+(461.−799.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1−960.iT−5.71e5T2 |
| 89 | 1+(66.6−115.i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1+1.02e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.30761325856879038847415801342, −11.05521058695858773422783186979, −10.05502089131653328297126720467, −8.758053226831317174576573880616, −8.002588325499214794026992393198, −6.84996749295681751455424504315, −5.46634607128395574137785395737, −4.45762632590269416334745843534, −2.77984834948785585312412548276, −1.07645672034891283059352257046,
2.17142415664763979969266511036, 3.49317070162148028743768000800, 4.44657389759900781229885196989, 5.66408049851166994678336979841, 7.81849801858679977144026040333, 8.182572900003667010566216623677, 9.381653907995503172218134379889, 10.34819233633807527062174821556, 11.89524539170641555814294146432, 12.19776214090870061611260648517