L(s) = 1 | + 2.51·2-s + 0.988·3-s + 4.30·4-s + 0.809·5-s + 2.48·6-s + 2.08·7-s + 5.78·8-s − 2.02·9-s + 2.03·10-s + 0.174·11-s + 4.25·12-s + 1.58·13-s + 5.23·14-s + 0.799·15-s + 5.91·16-s + 2.42·17-s − 5.08·18-s − 0.892·19-s + 3.48·20-s + 2.06·21-s + 0.437·22-s − 4.85·23-s + 5.71·24-s − 4.34·25-s + 3.98·26-s − 4.96·27-s + 8.97·28-s + ⋯ |
L(s) = 1 | + 1.77·2-s + 0.570·3-s + 2.15·4-s + 0.361·5-s + 1.01·6-s + 0.788·7-s + 2.04·8-s − 0.674·9-s + 0.642·10-s + 0.0525·11-s + 1.22·12-s + 0.440·13-s + 1.40·14-s + 0.206·15-s + 1.47·16-s + 0.587·17-s − 1.19·18-s − 0.204·19-s + 0.778·20-s + 0.449·21-s + 0.0932·22-s − 1.01·23-s + 1.16·24-s − 0.868·25-s + 0.781·26-s − 0.955·27-s + 1.69·28-s + ⋯ |
Λ(s)=(=(1759s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1759s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
6.636105269 |
L(21) |
≈ |
6.636105269 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 1759 | 1−T |
good | 2 | 1−2.51T+2T2 |
| 3 | 1−0.988T+3T2 |
| 5 | 1−0.809T+5T2 |
| 7 | 1−2.08T+7T2 |
| 11 | 1−0.174T+11T2 |
| 13 | 1−1.58T+13T2 |
| 17 | 1−2.42T+17T2 |
| 19 | 1+0.892T+19T2 |
| 23 | 1+4.85T+23T2 |
| 29 | 1−3.57T+29T2 |
| 31 | 1+2.95T+31T2 |
| 37 | 1−10.4T+37T2 |
| 41 | 1−0.384T+41T2 |
| 43 | 1+6.89T+43T2 |
| 47 | 1+5.84T+47T2 |
| 53 | 1−13.1T+53T2 |
| 59 | 1+12.1T+59T2 |
| 61 | 1−7.96T+61T2 |
| 67 | 1+9.61T+67T2 |
| 71 | 1−3.23T+71T2 |
| 73 | 1+3.87T+73T2 |
| 79 | 1−14.8T+79T2 |
| 83 | 1−16.2T+83T2 |
| 89 | 1+11.9T+89T2 |
| 97 | 1−1.99T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.293648831847178721313222694898, −8.196846225010305128140450673162, −7.73726585307130418169690488358, −6.51368636074897312173208421120, −5.87201125111447772508716987218, −5.21094421176340378482966988309, −4.26181097848993732451652865454, −3.50845740879403620623355165554, −2.57198086039079186503557863220, −1.73408558671891566192624580232,
1.73408558671891566192624580232, 2.57198086039079186503557863220, 3.50845740879403620623355165554, 4.26181097848993732451652865454, 5.21094421176340378482966988309, 5.87201125111447772508716987218, 6.51368636074897312173208421120, 7.73726585307130418169690488358, 8.196846225010305128140450673162, 9.293648831847178721313222694898