Properties

Label 2-1759-1.1-c1-0-130
Degree $2$
Conductor $1759$
Sign $-1$
Analytic cond. $14.0456$
Root an. cond. $3.74775$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.99·2-s − 0.531·3-s + 1.99·4-s + 0.113·5-s − 1.06·6-s − 3.12·7-s − 0.00957·8-s − 2.71·9-s + 0.227·10-s + 2.02·11-s − 1.06·12-s + 5.47·13-s − 6.25·14-s − 0.0604·15-s − 4.00·16-s − 4.25·17-s − 5.43·18-s − 1.81·19-s + 0.227·20-s + 1.66·21-s + 4.04·22-s − 1.75·23-s + 0.00508·24-s − 4.98·25-s + 10.9·26-s + 3.03·27-s − 6.24·28-s + ⋯
L(s)  = 1  + 1.41·2-s − 0.306·3-s + 0.997·4-s + 0.0508·5-s − 0.433·6-s − 1.18·7-s − 0.00338·8-s − 0.905·9-s + 0.0719·10-s + 0.610·11-s − 0.306·12-s + 1.51·13-s − 1.67·14-s − 0.0156·15-s − 1.00·16-s − 1.03·17-s − 1.28·18-s − 0.416·19-s + 0.0507·20-s + 0.362·21-s + 0.862·22-s − 0.365·23-s + 0.00103·24-s − 0.997·25-s + 2.14·26-s + 0.584·27-s − 1.17·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1759 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1759 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1759\)
Sign: $-1$
Analytic conductor: \(14.0456\)
Root analytic conductor: \(3.74775\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1759,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad1759 \( 1 + T \)
good2 \( 1 - 1.99T + 2T^{2} \)
3 \( 1 + 0.531T + 3T^{2} \)
5 \( 1 - 0.113T + 5T^{2} \)
7 \( 1 + 3.12T + 7T^{2} \)
11 \( 1 - 2.02T + 11T^{2} \)
13 \( 1 - 5.47T + 13T^{2} \)
17 \( 1 + 4.25T + 17T^{2} \)
19 \( 1 + 1.81T + 19T^{2} \)
23 \( 1 + 1.75T + 23T^{2} \)
29 \( 1 + 4.32T + 29T^{2} \)
31 \( 1 + 3.99T + 31T^{2} \)
37 \( 1 - 10.2T + 37T^{2} \)
41 \( 1 + 12.2T + 41T^{2} \)
43 \( 1 + 4.14T + 43T^{2} \)
47 \( 1 + 5.02T + 47T^{2} \)
53 \( 1 + 11.0T + 53T^{2} \)
59 \( 1 - 9.61T + 59T^{2} \)
61 \( 1 + 10.2T + 61T^{2} \)
67 \( 1 + 6.53T + 67T^{2} \)
71 \( 1 - 1.16T + 71T^{2} \)
73 \( 1 - 14.5T + 73T^{2} \)
79 \( 1 - 12.2T + 79T^{2} \)
83 \( 1 - 3.03T + 83T^{2} \)
89 \( 1 - 12.8T + 89T^{2} \)
97 \( 1 - 5.16T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.005466146516908656650730449311, −8.129619172262496295196296369148, −6.64693813202972202119046682512, −6.30603728893746138703646411572, −5.80255927857673420319978561557, −4.75275692530387377372957102853, −3.70201967475401659036207751157, −3.35455475132659221496475241587, −2.06636640658925882430744945313, 0, 2.06636640658925882430744945313, 3.35455475132659221496475241587, 3.70201967475401659036207751157, 4.75275692530387377372957102853, 5.80255927857673420319978561557, 6.30603728893746138703646411572, 6.64693813202972202119046682512, 8.129619172262496295196296369148, 9.005466146516908656650730449311

Graph of the $Z$-function along the critical line