L(s) = 1 | + 1.99·2-s − 0.531·3-s + 1.99·4-s + 0.113·5-s − 1.06·6-s − 3.12·7-s − 0.00957·8-s − 2.71·9-s + 0.227·10-s + 2.02·11-s − 1.06·12-s + 5.47·13-s − 6.25·14-s − 0.0604·15-s − 4.00·16-s − 4.25·17-s − 5.43·18-s − 1.81·19-s + 0.227·20-s + 1.66·21-s + 4.04·22-s − 1.75·23-s + 0.00508·24-s − 4.98·25-s + 10.9·26-s + 3.03·27-s − 6.24·28-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 0.306·3-s + 0.997·4-s + 0.0508·5-s − 0.433·6-s − 1.18·7-s − 0.00338·8-s − 0.905·9-s + 0.0719·10-s + 0.610·11-s − 0.306·12-s + 1.51·13-s − 1.67·14-s − 0.0156·15-s − 1.00·16-s − 1.03·17-s − 1.28·18-s − 0.416·19-s + 0.0507·20-s + 0.362·21-s + 0.862·22-s − 0.365·23-s + 0.00103·24-s − 0.997·25-s + 2.14·26-s + 0.584·27-s − 1.17·28-s + ⋯ |
Λ(s)=(=(1759s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1759s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 1759 | 1+T |
good | 2 | 1−1.99T+2T2 |
| 3 | 1+0.531T+3T2 |
| 5 | 1−0.113T+5T2 |
| 7 | 1+3.12T+7T2 |
| 11 | 1−2.02T+11T2 |
| 13 | 1−5.47T+13T2 |
| 17 | 1+4.25T+17T2 |
| 19 | 1+1.81T+19T2 |
| 23 | 1+1.75T+23T2 |
| 29 | 1+4.32T+29T2 |
| 31 | 1+3.99T+31T2 |
| 37 | 1−10.2T+37T2 |
| 41 | 1+12.2T+41T2 |
| 43 | 1+4.14T+43T2 |
| 47 | 1+5.02T+47T2 |
| 53 | 1+11.0T+53T2 |
| 59 | 1−9.61T+59T2 |
| 61 | 1+10.2T+61T2 |
| 67 | 1+6.53T+67T2 |
| 71 | 1−1.16T+71T2 |
| 73 | 1−14.5T+73T2 |
| 79 | 1−12.2T+79T2 |
| 83 | 1−3.03T+83T2 |
| 89 | 1−12.8T+89T2 |
| 97 | 1−5.16T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.005466146516908656650730449311, −8.129619172262496295196296369148, −6.64693813202972202119046682512, −6.30603728893746138703646411572, −5.80255927857673420319978561557, −4.75275692530387377372957102853, −3.70201967475401659036207751157, −3.35455475132659221496475241587, −2.06636640658925882430744945313, 0,
2.06636640658925882430744945313, 3.35455475132659221496475241587, 3.70201967475401659036207751157, 4.75275692530387377372957102853, 5.80255927857673420319978561557, 6.30603728893746138703646411572, 6.64693813202972202119046682512, 8.129619172262496295196296369148, 9.005466146516908656650730449311