L(s) = 1 | − 19.2·3-s + 33.5·5-s − 67.1·7-s + 128.·9-s + 121·11-s + 504.·13-s − 646.·15-s + 984.·17-s − 281.·19-s + 1.29e3·21-s − 359.·23-s − 1.99e3·25-s + 2.20e3·27-s − 5.02e3·29-s + 7.01e3·31-s − 2.33e3·33-s − 2.25e3·35-s − 5.24e3·37-s − 9.72e3·39-s − 1.38e4·41-s − 2.01e4·43-s + 4.30e3·45-s − 6.78e3·47-s − 1.22e4·49-s − 1.89e4·51-s − 2.72e4·53-s + 4.05e3·55-s + ⋯ |
L(s) = 1 | − 1.23·3-s + 0.600·5-s − 0.518·7-s + 0.528·9-s + 0.301·11-s + 0.828·13-s − 0.741·15-s + 0.826·17-s − 0.178·19-s + 0.640·21-s − 0.141·23-s − 0.639·25-s + 0.583·27-s − 1.10·29-s + 1.31·31-s − 0.372·33-s − 0.310·35-s − 0.629·37-s − 1.02·39-s − 1.28·41-s − 1.66·43-s + 0.316·45-s − 0.447·47-s − 0.731·49-s − 1.02·51-s − 1.33·53-s + 0.180·55-s + ⋯ |
Λ(s)=(=(176s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(176s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1−121T |
good | 3 | 1+19.2T+243T2 |
| 5 | 1−33.5T+3.12e3T2 |
| 7 | 1+67.1T+1.68e4T2 |
| 13 | 1−504.T+3.71e5T2 |
| 17 | 1−984.T+1.41e6T2 |
| 19 | 1+281.T+2.47e6T2 |
| 23 | 1+359.T+6.43e6T2 |
| 29 | 1+5.02e3T+2.05e7T2 |
| 31 | 1−7.01e3T+2.86e7T2 |
| 37 | 1+5.24e3T+6.93e7T2 |
| 41 | 1+1.38e4T+1.15e8T2 |
| 43 | 1+2.01e4T+1.47e8T2 |
| 47 | 1+6.78e3T+2.29e8T2 |
| 53 | 1+2.72e4T+4.18e8T2 |
| 59 | 1+1.90e4T+7.14e8T2 |
| 61 | 1−2.40e4T+8.44e8T2 |
| 67 | 1+5.32e4T+1.35e9T2 |
| 71 | 1−4.42e4T+1.80e9T2 |
| 73 | 1−2.19e4T+2.07e9T2 |
| 79 | 1−2.63e4T+3.07e9T2 |
| 83 | 1−1.94e4T+3.93e9T2 |
| 89 | 1+3.13e4T+5.58e9T2 |
| 97 | 1−1.34e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.39029789818719813212124866064, −10.36018330384490362369781241231, −9.579703294523501185611750644654, −8.228228237735083129416469802353, −6.64901142587139128158836994933, −6.02433672669980097549679474663, −5.03796223483521583507132212908, −3.43760760367188613810706518846, −1.49458103574551766913901550212, 0,
1.49458103574551766913901550212, 3.43760760367188613810706518846, 5.03796223483521583507132212908, 6.02433672669980097549679474663, 6.64901142587139128158836994933, 8.228228237735083129416469802353, 9.579703294523501185611750644654, 10.36018330384490362369781241231, 11.39029789818719813212124866064