Properties

Label 2-176-1.1-c5-0-15
Degree $2$
Conductor $176$
Sign $-1$
Analytic cond. $28.2275$
Root an. cond. $5.31296$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 19.2·3-s + 33.5·5-s − 67.1·7-s + 128.·9-s + 121·11-s + 504.·13-s − 646.·15-s + 984.·17-s − 281.·19-s + 1.29e3·21-s − 359.·23-s − 1.99e3·25-s + 2.20e3·27-s − 5.02e3·29-s + 7.01e3·31-s − 2.33e3·33-s − 2.25e3·35-s − 5.24e3·37-s − 9.72e3·39-s − 1.38e4·41-s − 2.01e4·43-s + 4.30e3·45-s − 6.78e3·47-s − 1.22e4·49-s − 1.89e4·51-s − 2.72e4·53-s + 4.05e3·55-s + ⋯
L(s)  = 1  − 1.23·3-s + 0.600·5-s − 0.518·7-s + 0.528·9-s + 0.301·11-s + 0.828·13-s − 0.741·15-s + 0.826·17-s − 0.178·19-s + 0.640·21-s − 0.141·23-s − 0.639·25-s + 0.583·27-s − 1.10·29-s + 1.31·31-s − 0.372·33-s − 0.310·35-s − 0.629·37-s − 1.02·39-s − 1.28·41-s − 1.66·43-s + 0.316·45-s − 0.447·47-s − 0.731·49-s − 1.02·51-s − 1.33·53-s + 0.180·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(176\)    =    \(2^{4} \cdot 11\)
Sign: $-1$
Analytic conductor: \(28.2275\)
Root analytic conductor: \(5.31296\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 176,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 - 121T \)
good3 \( 1 + 19.2T + 243T^{2} \)
5 \( 1 - 33.5T + 3.12e3T^{2} \)
7 \( 1 + 67.1T + 1.68e4T^{2} \)
13 \( 1 - 504.T + 3.71e5T^{2} \)
17 \( 1 - 984.T + 1.41e6T^{2} \)
19 \( 1 + 281.T + 2.47e6T^{2} \)
23 \( 1 + 359.T + 6.43e6T^{2} \)
29 \( 1 + 5.02e3T + 2.05e7T^{2} \)
31 \( 1 - 7.01e3T + 2.86e7T^{2} \)
37 \( 1 + 5.24e3T + 6.93e7T^{2} \)
41 \( 1 + 1.38e4T + 1.15e8T^{2} \)
43 \( 1 + 2.01e4T + 1.47e8T^{2} \)
47 \( 1 + 6.78e3T + 2.29e8T^{2} \)
53 \( 1 + 2.72e4T + 4.18e8T^{2} \)
59 \( 1 + 1.90e4T + 7.14e8T^{2} \)
61 \( 1 - 2.40e4T + 8.44e8T^{2} \)
67 \( 1 + 5.32e4T + 1.35e9T^{2} \)
71 \( 1 - 4.42e4T + 1.80e9T^{2} \)
73 \( 1 - 2.19e4T + 2.07e9T^{2} \)
79 \( 1 - 2.63e4T + 3.07e9T^{2} \)
83 \( 1 - 1.94e4T + 3.93e9T^{2} \)
89 \( 1 + 3.13e4T + 5.58e9T^{2} \)
97 \( 1 - 1.34e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.39029789818719813212124866064, −10.36018330384490362369781241231, −9.579703294523501185611750644654, −8.228228237735083129416469802353, −6.64901142587139128158836994933, −6.02433672669980097549679474663, −5.03796223483521583507132212908, −3.43760760367188613810706518846, −1.49458103574551766913901550212, 0, 1.49458103574551766913901550212, 3.43760760367188613810706518846, 5.03796223483521583507132212908, 6.02433672669980097549679474663, 6.64901142587139128158836994933, 8.228228237735083129416469802353, 9.579703294523501185611750644654, 10.36018330384490362369781241231, 11.39029789818719813212124866064

Graph of the $Z$-function along the critical line