L(s) = 1 | + 19.4·3-s + 82.2·5-s + 200.·7-s + 135.·9-s + 121·11-s + 418.·13-s + 1.60e3·15-s + 292.·17-s − 2.60e3·19-s + 3.90e3·21-s − 3.64e3·23-s + 3.64e3·25-s − 2.08e3·27-s − 13.9·29-s − 692.·31-s + 2.35e3·33-s + 1.64e4·35-s + 4.78e3·37-s + 8.14e3·39-s − 1.81e4·41-s − 1.59e4·43-s + 1.11e4·45-s − 1.05e4·47-s + 2.33e4·49-s + 5.68e3·51-s + 2.35e4·53-s + 9.95e3·55-s + ⋯ |
L(s) = 1 | + 1.24·3-s + 1.47·5-s + 1.54·7-s + 0.559·9-s + 0.301·11-s + 0.686·13-s + 1.83·15-s + 0.245·17-s − 1.65·19-s + 1.93·21-s − 1.43·23-s + 1.16·25-s − 0.550·27-s − 0.00307·29-s − 0.129·31-s + 0.376·33-s + 2.27·35-s + 0.575·37-s + 0.857·39-s − 1.68·41-s − 1.31·43-s + 0.823·45-s − 0.696·47-s + 1.39·49-s + 0.306·51-s + 1.15·53-s + 0.443·55-s + ⋯ |
Λ(s)=(=(176s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(176s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
4.487922528 |
L(21) |
≈ |
4.487922528 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1−121T |
good | 3 | 1−19.4T+243T2 |
| 5 | 1−82.2T+3.12e3T2 |
| 7 | 1−200.T+1.68e4T2 |
| 13 | 1−418.T+3.71e5T2 |
| 17 | 1−292.T+1.41e6T2 |
| 19 | 1+2.60e3T+2.47e6T2 |
| 23 | 1+3.64e3T+6.43e6T2 |
| 29 | 1+13.9T+2.05e7T2 |
| 31 | 1+692.T+2.86e7T2 |
| 37 | 1−4.78e3T+6.93e7T2 |
| 41 | 1+1.81e4T+1.15e8T2 |
| 43 | 1+1.59e4T+1.47e8T2 |
| 47 | 1+1.05e4T+2.29e8T2 |
| 53 | 1−2.35e4T+4.18e8T2 |
| 59 | 1−4.52e4T+7.14e8T2 |
| 61 | 1−1.11e4T+8.44e8T2 |
| 67 | 1−3.45e4T+1.35e9T2 |
| 71 | 1+5.91e4T+1.80e9T2 |
| 73 | 1−5.32e4T+2.07e9T2 |
| 79 | 1−7.75e3T+3.07e9T2 |
| 83 | 1−9.13e4T+3.93e9T2 |
| 89 | 1−1.17e5T+5.58e9T2 |
| 97 | 1+1.11e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.78374263580951575150924057629, −10.60546710592988308651516979325, −9.693882061216968535584651939428, −8.541865127790941975086532263303, −8.184167921799683615760428183299, −6.52148973862538518303442003983, −5.33816573820448082853794309052, −3.93498995180439610569072104704, −2.22518636473064861338222809968, −1.65864343952665049043025395389,
1.65864343952665049043025395389, 2.22518636473064861338222809968, 3.93498995180439610569072104704, 5.33816573820448082853794309052, 6.52148973862538518303442003983, 8.184167921799683615760428183299, 8.541865127790941975086532263303, 9.693882061216968535584651939428, 10.60546710592988308651516979325, 11.78374263580951575150924057629