L(s) = 1 | + (−0.743 + 0.540i)3-s + (−1.24 − 3.82i)5-s + (−3.01 − 2.18i)7-s + (−0.665 + 2.04i)9-s + (1.97 − 2.66i)11-s + (0.324 − 0.998i)13-s + (2.99 + 2.17i)15-s + (−0.291 − 0.898i)17-s + (1.92 − 1.40i)19-s + 3.42·21-s + 1.73·23-s + (−9.05 + 6.58i)25-s + (−1.46 − 4.50i)27-s + (2.22 + 1.61i)29-s + (−1.47 + 4.55i)31-s + ⋯ |
L(s) = 1 | + (−0.429 + 0.311i)3-s + (−0.556 − 1.71i)5-s + (−1.13 − 0.827i)7-s + (−0.221 + 0.683i)9-s + (0.594 − 0.804i)11-s + (0.0899 − 0.276i)13-s + (0.772 + 0.561i)15-s + (−0.0708 − 0.217i)17-s + (0.442 − 0.321i)19-s + 0.746·21-s + 0.362·23-s + (−1.81 + 1.31i)25-s + (−0.281 − 0.867i)27-s + (0.412 + 0.300i)29-s + (−0.265 + 0.817i)31-s + ⋯ |
Λ(s)=(=(176s/2ΓC(s)L(s)(−0.273+0.961i)Λ(2−s)
Λ(s)=(=(176s/2ΓC(s+1/2)L(s)(−0.273+0.961i)Λ(1−s)
Degree: |
2 |
Conductor: |
176
= 24⋅11
|
Sign: |
−0.273+0.961i
|
Analytic conductor: |
1.40536 |
Root analytic conductor: |
1.18548 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ176(97,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 176, ( :1/2), −0.273+0.961i)
|
Particular Values
L(1) |
≈ |
0.417239−0.552243i |
L(21) |
≈ |
0.417239−0.552243i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(−1.97+2.66i)T |
good | 3 | 1+(0.743−0.540i)T+(0.927−2.85i)T2 |
| 5 | 1+(1.24+3.82i)T+(−4.04+2.93i)T2 |
| 7 | 1+(3.01+2.18i)T+(2.16+6.65i)T2 |
| 13 | 1+(−0.324+0.998i)T+(−10.5−7.64i)T2 |
| 17 | 1+(0.291+0.898i)T+(−13.7+9.99i)T2 |
| 19 | 1+(−1.92+1.40i)T+(5.87−18.0i)T2 |
| 23 | 1−1.73T+23T2 |
| 29 | 1+(−2.22−1.61i)T+(8.96+27.5i)T2 |
| 31 | 1+(1.47−4.55i)T+(−25.0−18.2i)T2 |
| 37 | 1+(1.71+1.24i)T+(11.4+35.1i)T2 |
| 41 | 1+(−7.38+5.36i)T+(12.6−38.9i)T2 |
| 43 | 1+0.431T+43T2 |
| 47 | 1+(−5.11+3.71i)T+(14.5−44.6i)T2 |
| 53 | 1+(−0.0976+0.300i)T+(−42.8−31.1i)T2 |
| 59 | 1+(−6.54−4.75i)T+(18.2+56.1i)T2 |
| 61 | 1+(4.21+12.9i)T+(−49.3+35.8i)T2 |
| 67 | 1+5.68T+67T2 |
| 71 | 1+(−3.97−12.2i)T+(−57.4+41.7i)T2 |
| 73 | 1+(−2.84−2.06i)T+(22.5+69.4i)T2 |
| 79 | 1+(−2.73+8.40i)T+(−63.9−46.4i)T2 |
| 83 | 1+(4.53+13.9i)T+(−67.1+48.7i)T2 |
| 89 | 1−2.43T+89T2 |
| 97 | 1+(−0.457+1.40i)T+(−78.4−57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.46841480913431735065278230464, −11.48514392381372088551512748830, −10.46907654960237223920439689651, −9.293048451175214255501297095316, −8.502499954918004623434601620660, −7.26184435705957710173773610563, −5.77028632117067388605651632994, −4.73325105820893329435214122761, −3.59167819931955364573235596547, −0.67812747072290170690573639269,
2.71970576039742230833987591170, 3.81931505250471424474722666511, 6.04229052329501929335123120022, 6.58770770870731449405398288657, 7.49317031383483779192281630653, 9.176055859669055409328542619834, 10.01997635704176197463276690571, 11.23265190997190256127775143216, 11.94117014176327566446386236522, 12.69815887555748676302491784615