L(s) = 1 | + (1.28 + 0.586i)2-s + (0.586 + 0.586i)3-s + (1.31 + 1.50i)4-s + (−1.32 + 1.32i)5-s + (0.411 + 1.09i)6-s − 1.42i·7-s + (0.805 + 2.71i)8-s − 2.31i·9-s + (−2.47 + 0.926i)10-s + (−0.707 + 0.707i)11-s + (−0.114 + 1.65i)12-s + (−1.74 − 1.74i)13-s + (0.832 − 1.82i)14-s − 1.54·15-s + (−0.552 + 3.96i)16-s + 6.99·17-s + ⋯ |
L(s) = 1 | + (0.910 + 0.414i)2-s + (0.338 + 0.338i)3-s + (0.656 + 0.754i)4-s + (−0.590 + 0.590i)5-s + (0.167 + 0.448i)6-s − 0.537i·7-s + (0.284 + 0.958i)8-s − 0.770i·9-s + (−0.782 + 0.292i)10-s + (−0.213 + 0.213i)11-s + (−0.0331 + 0.477i)12-s + (−0.482 − 0.482i)13-s + (0.222 − 0.488i)14-s − 0.400·15-s + (−0.138 + 0.990i)16-s + 1.69·17-s + ⋯ |
Λ(s)=(=(176s/2ΓC(s)L(s)(0.506−0.862i)Λ(2−s)
Λ(s)=(=(176s/2ΓC(s+1/2)L(s)(0.506−0.862i)Λ(1−s)
Degree: |
2 |
Conductor: |
176
= 24⋅11
|
Sign: |
0.506−0.862i
|
Analytic conductor: |
1.40536 |
Root analytic conductor: |
1.18548 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ176(45,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 176, ( :1/2), 0.506−0.862i)
|
Particular Values
L(1) |
≈ |
1.64410+0.940891i |
L(21) |
≈ |
1.64410+0.940891i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.28−0.586i)T |
| 11 | 1+(0.707−0.707i)T |
good | 3 | 1+(−0.586−0.586i)T+3iT2 |
| 5 | 1+(1.32−1.32i)T−5iT2 |
| 7 | 1+1.42iT−7T2 |
| 13 | 1+(1.74+1.74i)T+13iT2 |
| 17 | 1−6.99T+17T2 |
| 19 | 1+(3.48+3.48i)T+19iT2 |
| 23 | 1+4.79iT−23T2 |
| 29 | 1+(−3.38−3.38i)T+29iT2 |
| 31 | 1+8.04T+31T2 |
| 37 | 1+(4.09−4.09i)T−37iT2 |
| 41 | 1+5.85iT−41T2 |
| 43 | 1+(3.09−3.09i)T−43iT2 |
| 47 | 1+8.12T+47T2 |
| 53 | 1+(−0.759+0.759i)T−53iT2 |
| 59 | 1+(0.513−0.513i)T−59iT2 |
| 61 | 1+(−0.211−0.211i)T+61iT2 |
| 67 | 1+(−0.116−0.116i)T+67iT2 |
| 71 | 1−9.46iT−71T2 |
| 73 | 1−7.55iT−73T2 |
| 79 | 1−8.55T+79T2 |
| 83 | 1+(−7.36−7.36i)T+83iT2 |
| 89 | 1+2.68iT−89T2 |
| 97 | 1+15.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.80747907346369996469753564601, −12.15534748108069616514181036369, −10.98985508231822278945888708155, −10.07628587502780602349513345552, −8.543911677762268319955564594942, −7.44989553161865205178339994401, −6.67251551804783985519901297433, −5.17890179523264759313165165811, −3.87076134641849719957577952545, −2.99754421876959378699347313631,
1.90901546532702170384354139076, 3.46174778020870897351321714803, 4.84743254656332924167516206599, 5.82379556150558926564632219376, 7.40319265247117702815011598845, 8.280779018005384455581630284630, 9.691577621744629240216444275942, 10.78893188738063612379133266093, 11.99493681703418838648522486766, 12.40388000193432887267715346599