L(s) = 1 | + 2-s − 3-s − 4-s + 5-s − 6-s − 7-s − 3·8-s + 9-s + 10-s + 12-s − 14-s − 15-s − 16-s − 17-s + 18-s + 2·19-s − 20-s + 21-s + 6·23-s + 3·24-s + 25-s − 27-s + 28-s − 4·29-s − 30-s − 4·31-s + 5·32-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s − 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.377·7-s − 1.06·8-s + 1/3·9-s + 0.316·10-s + 0.288·12-s − 0.267·14-s − 0.258·15-s − 1/4·16-s − 0.242·17-s + 0.235·18-s + 0.458·19-s − 0.223·20-s + 0.218·21-s + 1.25·23-s + 0.612·24-s + 1/5·25-s − 0.192·27-s + 0.188·28-s − 0.742·29-s − 0.182·30-s − 0.718·31-s + 0.883·32-s + ⋯ |
Λ(s)=(=(1785s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1785s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.609357995 |
L(21) |
≈ |
1.609357995 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 5 | 1−T |
| 7 | 1+T |
| 17 | 1+T |
good | 2 | 1−T+pT2 |
| 11 | 1+pT2 |
| 13 | 1+pT2 |
| 19 | 1−2T+pT2 |
| 23 | 1−6T+pT2 |
| 29 | 1+4T+pT2 |
| 31 | 1+4T+pT2 |
| 37 | 1−4T+pT2 |
| 41 | 1−10T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1−6T+pT2 |
| 53 | 1+10T+pT2 |
| 59 | 1−12T+pT2 |
| 61 | 1−14T+pT2 |
| 67 | 1−12T+pT2 |
| 71 | 1+pT2 |
| 73 | 1+10T+pT2 |
| 79 | 1−14T+pT2 |
| 83 | 1+18T+pT2 |
| 89 | 1+pT2 |
| 97 | 1−2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.374382510909813445824217205848, −8.702357198738553963201149941811, −7.50835306182715923625670381327, −6.67931663262518992670154334973, −5.79530321478153998743024153736, −5.32363110257955187072323371443, −4.40788901588214039441553602026, −3.55589293847504590895677387951, −2.47789863858984368696646328047, −0.809464007514526215837722664467,
0.809464007514526215837722664467, 2.47789863858984368696646328047, 3.55589293847504590895677387951, 4.40788901588214039441553602026, 5.32363110257955187072323371443, 5.79530321478153998743024153736, 6.67931663262518992670154334973, 7.50835306182715923625670381327, 8.702357198738553963201149941811, 9.374382510909813445824217205848