Properties

Label 2-1785-1.1-c1-0-11
Degree $2$
Conductor $1785$
Sign $1$
Analytic cond. $14.2532$
Root an. cond. $3.77535$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s − 4-s + 5-s − 6-s − 7-s − 3·8-s + 9-s + 10-s + 12-s − 14-s − 15-s − 16-s − 17-s + 18-s + 2·19-s − 20-s + 21-s + 6·23-s + 3·24-s + 25-s − 27-s + 28-s − 4·29-s − 30-s − 4·31-s + 5·32-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s − 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.377·7-s − 1.06·8-s + 1/3·9-s + 0.316·10-s + 0.288·12-s − 0.267·14-s − 0.258·15-s − 1/4·16-s − 0.242·17-s + 0.235·18-s + 0.458·19-s − 0.223·20-s + 0.218·21-s + 1.25·23-s + 0.612·24-s + 1/5·25-s − 0.192·27-s + 0.188·28-s − 0.742·29-s − 0.182·30-s − 0.718·31-s + 0.883·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1785 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1785 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1785\)    =    \(3 \cdot 5 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(14.2532\)
Root analytic conductor: \(3.77535\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1785,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.609357995\)
\(L(\frac12)\) \(\approx\) \(1.609357995\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 + T \)
17 \( 1 + T \)
good2 \( 1 - T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 4 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 14 T + p T^{2} \)
83 \( 1 + 18 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.374382510909813445824217205848, −8.702357198738553963201149941811, −7.50835306182715923625670381327, −6.67931663262518992670154334973, −5.79530321478153998743024153736, −5.32363110257955187072323371443, −4.40788901588214039441553602026, −3.55589293847504590895677387951, −2.47789863858984368696646328047, −0.809464007514526215837722664467, 0.809464007514526215837722664467, 2.47789863858984368696646328047, 3.55589293847504590895677387951, 4.40788901588214039441553602026, 5.32363110257955187072323371443, 5.79530321478153998743024153736, 6.67931663262518992670154334973, 7.50835306182715923625670381327, 8.702357198738553963201149941811, 9.374382510909813445824217205848

Graph of the $Z$-function along the critical line