Properties

Label 2-1785-1.1-c1-0-38
Degree $2$
Conductor $1785$
Sign $-1$
Analytic cond. $14.2532$
Root an. cond. $3.77535$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s − 5-s + 7-s + 9-s + 2·11-s + 2·12-s − 5·13-s + 15-s + 4·16-s + 17-s + 2·19-s + 2·20-s − 21-s − 23-s + 25-s − 27-s − 2·28-s + 8·29-s + 31-s − 2·33-s − 35-s − 2·36-s − 3·37-s + 5·39-s − 7·41-s − 4·44-s + ⋯
L(s)  = 1  − 0.577·3-s − 4-s − 0.447·5-s + 0.377·7-s + 1/3·9-s + 0.603·11-s + 0.577·12-s − 1.38·13-s + 0.258·15-s + 16-s + 0.242·17-s + 0.458·19-s + 0.447·20-s − 0.218·21-s − 0.208·23-s + 1/5·25-s − 0.192·27-s − 0.377·28-s + 1.48·29-s + 0.179·31-s − 0.348·33-s − 0.169·35-s − 1/3·36-s − 0.493·37-s + 0.800·39-s − 1.09·41-s − 0.603·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1785 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1785 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1785\)    =    \(3 \cdot 5 \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(14.2532\)
Root analytic conductor: \(3.77535\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1785,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 - T \)
good2 \( 1 + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 5 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 - T + p T^{2} \)
37 \( 1 + 3 T + p T^{2} \)
41 \( 1 + 7 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 + T + p T^{2} \)
53 \( 1 + 8 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 7 T + p T^{2} \)
67 \( 1 - 16 T + p T^{2} \)
71 \( 1 + 10 T + p T^{2} \)
73 \( 1 + 8 T + p T^{2} \)
79 \( 1 + 6 T + p T^{2} \)
83 \( 1 + 13 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 + 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.875124152362556846665938617699, −8.130508438345186837574540048250, −7.36822758089724012978627819462, −6.50865430507889081738445221234, −5.38373779217897637905779872186, −4.79559864635169263531152538148, −4.11142735542990905129011155495, −2.98483251670407777110976435701, −1.33318755612277826546869106901, 0, 1.33318755612277826546869106901, 2.98483251670407777110976435701, 4.11142735542990905129011155495, 4.79559864635169263531152538148, 5.38373779217897637905779872186, 6.50865430507889081738445221234, 7.36822758089724012978627819462, 8.130508438345186837574540048250, 8.875124152362556846665938617699

Graph of the $Z$-function along the critical line