L(s) = 1 | − 3-s − 2·4-s − 5-s + 7-s + 9-s + 2·11-s + 2·12-s − 5·13-s + 15-s + 4·16-s + 17-s + 2·19-s + 2·20-s − 21-s − 23-s + 25-s − 27-s − 2·28-s + 8·29-s + 31-s − 2·33-s − 35-s − 2·36-s − 3·37-s + 5·39-s − 7·41-s − 4·44-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 4-s − 0.447·5-s + 0.377·7-s + 1/3·9-s + 0.603·11-s + 0.577·12-s − 1.38·13-s + 0.258·15-s + 16-s + 0.242·17-s + 0.458·19-s + 0.447·20-s − 0.218·21-s − 0.208·23-s + 1/5·25-s − 0.192·27-s − 0.377·28-s + 1.48·29-s + 0.179·31-s − 0.348·33-s − 0.169·35-s − 1/3·36-s − 0.493·37-s + 0.800·39-s − 1.09·41-s − 0.603·44-s + ⋯ |
Λ(s)=(=(1785s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1785s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 5 | 1+T |
| 7 | 1−T |
| 17 | 1−T |
good | 2 | 1+pT2 |
| 11 | 1−2T+pT2 |
| 13 | 1+5T+pT2 |
| 19 | 1−2T+pT2 |
| 23 | 1+T+pT2 |
| 29 | 1−8T+pT2 |
| 31 | 1−T+pT2 |
| 37 | 1+3T+pT2 |
| 41 | 1+7T+pT2 |
| 43 | 1+pT2 |
| 47 | 1+T+pT2 |
| 53 | 1+8T+pT2 |
| 59 | 1+pT2 |
| 61 | 1+7T+pT2 |
| 67 | 1−16T+pT2 |
| 71 | 1+10T+pT2 |
| 73 | 1+8T+pT2 |
| 79 | 1+6T+pT2 |
| 83 | 1+13T+pT2 |
| 89 | 1+2T+pT2 |
| 97 | 1+6T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.875124152362556846665938617699, −8.130508438345186837574540048250, −7.36822758089724012978627819462, −6.50865430507889081738445221234, −5.38373779217897637905779872186, −4.79559864635169263531152538148, −4.11142735542990905129011155495, −2.98483251670407777110976435701, −1.33318755612277826546869106901, 0,
1.33318755612277826546869106901, 2.98483251670407777110976435701, 4.11142735542990905129011155495, 4.79559864635169263531152538148, 5.38373779217897637905779872186, 6.50865430507889081738445221234, 7.36822758089724012978627819462, 8.130508438345186837574540048250, 8.875124152362556846665938617699