Properties

Label 2-1785-1.1-c1-0-39
Degree $2$
Conductor $1785$
Sign $1$
Analytic cond. $14.2532$
Root an. cond. $3.77535$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.46·2-s − 3-s + 4.09·4-s + 5-s − 2.46·6-s − 7-s + 5.15·8-s + 9-s + 2.46·10-s + 5.09·11-s − 4.09·12-s − 0.461·13-s − 2.46·14-s − 15-s + 4.55·16-s − 17-s + 2.46·18-s + 2·19-s + 4.09·20-s + 21-s + 12.5·22-s − 1.15·23-s − 5.15·24-s + 25-s − 1.13·26-s − 27-s − 4.09·28-s + ⋯
L(s)  = 1  + 1.74·2-s − 0.577·3-s + 2.04·4-s + 0.447·5-s − 1.00·6-s − 0.377·7-s + 1.82·8-s + 0.333·9-s + 0.780·10-s + 1.53·11-s − 1.18·12-s − 0.128·13-s − 0.659·14-s − 0.258·15-s + 1.13·16-s − 0.242·17-s + 0.581·18-s + 0.458·19-s + 0.914·20-s + 0.218·21-s + 2.67·22-s − 0.240·23-s − 1.05·24-s + 0.200·25-s − 0.223·26-s − 0.192·27-s − 0.773·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1785 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1785 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1785\)    =    \(3 \cdot 5 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(14.2532\)
Root analytic conductor: \(3.77535\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1785,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.700790578\)
\(L(\frac12)\) \(\approx\) \(4.700790578\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 + T \)
17 \( 1 + T \)
good2 \( 1 - 2.46T + 2T^{2} \)
11 \( 1 - 5.09T + 11T^{2} \)
13 \( 1 + 0.461T + 13T^{2} \)
19 \( 1 - 2T + 19T^{2} \)
23 \( 1 + 1.15T + 23T^{2} \)
29 \( 1 - 8.24T + 29T^{2} \)
31 \( 1 - 4.29T + 31T^{2} \)
37 \( 1 + 2.23T + 37T^{2} \)
41 \( 1 + 4.30T + 41T^{2} \)
43 \( 1 - 5.33T + 43T^{2} \)
47 \( 1 + 7.38T + 47T^{2} \)
53 \( 1 + 0.691T + 53T^{2} \)
59 \( 1 + 3.73T + 59T^{2} \)
61 \( 1 - 8.96T + 61T^{2} \)
67 \( 1 - 3.15T + 67T^{2} \)
71 \( 1 - 8.29T + 71T^{2} \)
73 \( 1 - 2.70T + 73T^{2} \)
79 \( 1 + 4.93T + 79T^{2} \)
83 \( 1 + 15.4T + 83T^{2} \)
89 \( 1 + 8.58T + 89T^{2} \)
97 \( 1 + 6.58T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.511872168624075647253447211564, −8.434315458376606741783970360455, −7.05072153429717060336635983800, −6.57401551005486748842532159933, −6.02973105513635434249178378518, −5.14594943860019218434763631113, −4.39933390822749981525643999541, −3.61534940514463236847955847788, −2.61666086751245302536262113995, −1.35489160776684380839810096408, 1.35489160776684380839810096408, 2.61666086751245302536262113995, 3.61534940514463236847955847788, 4.39933390822749981525643999541, 5.14594943860019218434763631113, 6.02973105513635434249178378518, 6.57401551005486748842532159933, 7.05072153429717060336635983800, 8.434315458376606741783970360455, 9.511872168624075647253447211564

Graph of the $Z$-function along the critical line