L(s) = 1 | + 1.61i·2-s − i·3-s − 0.608·4-s + (2.06 + 0.867i)5-s + 1.61·6-s − i·7-s + 2.24i·8-s − 9-s + (−1.40 + 3.32i)10-s + 3.70·11-s + 0.608i·12-s − 0.484i·13-s + 1.61·14-s + (0.867 − 2.06i)15-s − 4.84·16-s − i·17-s + ⋯ |
L(s) = 1 | + 1.14i·2-s − 0.577i·3-s − 0.304·4-s + (0.921 + 0.388i)5-s + 0.659·6-s − 0.377i·7-s + 0.794i·8-s − 0.333·9-s + (−0.443 + 1.05i)10-s + 1.11·11-s + 0.175i·12-s − 0.134i·13-s + 0.431·14-s + (0.224 − 0.532i)15-s − 1.21·16-s − 0.242i·17-s + ⋯ |
Λ(s)=(=(1785s/2ΓC(s)L(s)(0.388−0.921i)Λ(2−s)
Λ(s)=(=(1785s/2ΓC(s+1/2)L(s)(0.388−0.921i)Λ(1−s)
Degree: |
2 |
Conductor: |
1785
= 3⋅5⋅7⋅17
|
Sign: |
0.388−0.921i
|
Analytic conductor: |
14.2532 |
Root analytic conductor: |
3.77535 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1785(1429,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1785, ( :1/2), 0.388−0.921i)
|
Particular Values
L(1) |
≈ |
2.471027188 |
L(21) |
≈ |
2.471027188 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+iT |
| 5 | 1+(−2.06−0.867i)T |
| 7 | 1+iT |
| 17 | 1+iT |
good | 2 | 1−1.61iT−2T2 |
| 11 | 1−3.70T+11T2 |
| 13 | 1+0.484iT−13T2 |
| 19 | 1−8.59T+19T2 |
| 23 | 1+6.32iT−23T2 |
| 29 | 1−5.03T+29T2 |
| 31 | 1+10.3T+31T2 |
| 37 | 1−5.74iT−37T2 |
| 41 | 1+4.52T+41T2 |
| 43 | 1+0.961iT−43T2 |
| 47 | 1+3.97iT−47T2 |
| 53 | 1+3.25iT−53T2 |
| 59 | 1+0.477T+59T2 |
| 61 | 1−1.83T+61T2 |
| 67 | 1−3.45iT−67T2 |
| 71 | 1−8.74T+71T2 |
| 73 | 1−10.6iT−73T2 |
| 79 | 1−16.1T+79T2 |
| 83 | 1−5.53iT−83T2 |
| 89 | 1−4.43T+89T2 |
| 97 | 1+12.0iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.241567975147860344187497011455, −8.482355936759903620827611752975, −7.58834627300548962176397076121, −6.79283096110699031051814618019, −6.60136425738142760693986500659, −5.58665893637913569100012199845, −4.98183978302497058301683071610, −3.48655472222029071924114872499, −2.38420246397756472316126905504, −1.21866077949614307075561432787,
1.16254302163613460598348687825, 1.97812764802280684224778411588, 3.17360269074546208372165286336, 3.80664602886901444203971388914, 4.97843830843460672473728694035, 5.71370621763195204526570876843, 6.61486243166397282514942285066, 7.60030935868463470088570142019, 8.973510002434140901970739654106, 9.384787482571778517227223591692