Properties

Label 2-1800-1.1-c1-0-1
Degree $2$
Conductor $1800$
Sign $1$
Analytic cond. $14.3730$
Root an. cond. $3.79118$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s − 2·11-s − 4·13-s − 2·17-s + 4·19-s + 8·23-s + 10·29-s + 4·31-s + 8·43-s + 8·47-s − 3·49-s + 6·53-s + 14·59-s − 14·61-s + 4·67-s − 12·71-s − 6·73-s + 4·77-s − 12·79-s + 4·83-s + 12·89-s + 8·91-s + 14·97-s − 6·101-s + 14·103-s − 12·107-s + 2·109-s + ⋯
L(s)  = 1  − 0.755·7-s − 0.603·11-s − 1.10·13-s − 0.485·17-s + 0.917·19-s + 1.66·23-s + 1.85·29-s + 0.718·31-s + 1.21·43-s + 1.16·47-s − 3/7·49-s + 0.824·53-s + 1.82·59-s − 1.79·61-s + 0.488·67-s − 1.42·71-s − 0.702·73-s + 0.455·77-s − 1.35·79-s + 0.439·83-s + 1.27·89-s + 0.838·91-s + 1.42·97-s − 0.597·101-s + 1.37·103-s − 1.16·107-s + 0.191·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(14.3730\)
Root analytic conductor: \(3.79118\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.403338159\)
\(L(\frac12)\) \(\approx\) \(1.403338159\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 14 T + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 12 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.270407886951524481778316794857, −8.615181679584005774951790009650, −7.51380370959353581607795133194, −7.02360313048233502050208617514, −6.10428552516702050498345256322, −5.13249432243264413574946933168, −4.45417944745640591028127050063, −3.08658133002906810213405205063, −2.55273956376703116430496016927, −0.797276142181345148530396500843, 0.797276142181345148530396500843, 2.55273956376703116430496016927, 3.08658133002906810213405205063, 4.45417944745640591028127050063, 5.13249432243264413574946933168, 6.10428552516702050498345256322, 7.02360313048233502050208617514, 7.51380370959353581607795133194, 8.615181679584005774951790009650, 9.270407886951524481778316794857

Graph of the $Z$-function along the critical line