L(s) = 1 | − 2·7-s + 4·11-s − 4·13-s − 4·19-s − 2·23-s − 2·29-s − 4·37-s − 2·41-s + 6·43-s − 6·47-s − 3·49-s − 4·53-s + 12·59-s − 10·61-s − 14·67-s − 8·71-s − 8·73-s − 8·77-s + 16·79-s + 2·83-s − 6·89-s + 8·91-s − 16·97-s − 6·101-s − 14·103-s − 10·107-s − 6·109-s + ⋯ |
L(s) = 1 | − 0.755·7-s + 1.20·11-s − 1.10·13-s − 0.917·19-s − 0.417·23-s − 0.371·29-s − 0.657·37-s − 0.312·41-s + 0.914·43-s − 0.875·47-s − 3/7·49-s − 0.549·53-s + 1.56·59-s − 1.28·61-s − 1.71·67-s − 0.949·71-s − 0.936·73-s − 0.911·77-s + 1.80·79-s + 0.219·83-s − 0.635·89-s + 0.838·91-s − 1.62·97-s − 0.597·101-s − 1.37·103-s − 0.966·107-s − 0.574·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + 2 T + p T^{2} \) |
| 11 | \( 1 - 4 T + p T^{2} \) |
| 13 | \( 1 + 4 T + p T^{2} \) |
| 17 | \( 1 + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + 2 T + p T^{2} \) |
| 29 | \( 1 + 2 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 + 4 T + p T^{2} \) |
| 41 | \( 1 + 2 T + p T^{2} \) |
| 43 | \( 1 - 6 T + p T^{2} \) |
| 47 | \( 1 + 6 T + p T^{2} \) |
| 53 | \( 1 + 4 T + p T^{2} \) |
| 59 | \( 1 - 12 T + p T^{2} \) |
| 61 | \( 1 + 10 T + p T^{2} \) |
| 67 | \( 1 + 14 T + p T^{2} \) |
| 71 | \( 1 + 8 T + p T^{2} \) |
| 73 | \( 1 + 8 T + p T^{2} \) |
| 79 | \( 1 - 16 T + p T^{2} \) |
| 83 | \( 1 - 2 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 + 16 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.046460112719450832914573677804, −8.125314960122643492265723439737, −7.14831674158858802892659992469, −6.55536659882703175830371730918, −5.77630218563910465834928061038, −4.65101662855925806243412279834, −3.86307675984348758158108701206, −2.85591890992545130759706287184, −1.69174310740343087998151716036, 0,
1.69174310740343087998151716036, 2.85591890992545130759706287184, 3.86307675984348758158108701206, 4.65101662855925806243412279834, 5.77630218563910465834928061038, 6.55536659882703175830371730918, 7.14831674158858802892659992469, 8.125314960122643492265723439737, 9.046460112719450832914573677804