L(s) = 1 | − 2·7-s + 4·11-s − 4·13-s − 4·19-s − 2·23-s − 2·29-s − 4·37-s − 2·41-s + 6·43-s − 6·47-s − 3·49-s − 4·53-s + 12·59-s − 10·61-s − 14·67-s − 8·71-s − 8·73-s − 8·77-s + 16·79-s + 2·83-s − 6·89-s + 8·91-s − 16·97-s − 6·101-s − 14·103-s − 10·107-s − 6·109-s + ⋯ |
L(s) = 1 | − 0.755·7-s + 1.20·11-s − 1.10·13-s − 0.917·19-s − 0.417·23-s − 0.371·29-s − 0.657·37-s − 0.312·41-s + 0.914·43-s − 0.875·47-s − 3/7·49-s − 0.549·53-s + 1.56·59-s − 1.28·61-s − 1.71·67-s − 0.949·71-s − 0.936·73-s − 0.911·77-s + 1.80·79-s + 0.219·83-s − 0.635·89-s + 0.838·91-s − 1.62·97-s − 0.597·101-s − 1.37·103-s − 0.966·107-s − 0.574·109-s + ⋯ |
Λ(s)=(=(1800s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1800s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+2T+pT2 |
| 11 | 1−4T+pT2 |
| 13 | 1+4T+pT2 |
| 17 | 1+pT2 |
| 19 | 1+4T+pT2 |
| 23 | 1+2T+pT2 |
| 29 | 1+2T+pT2 |
| 31 | 1+pT2 |
| 37 | 1+4T+pT2 |
| 41 | 1+2T+pT2 |
| 43 | 1−6T+pT2 |
| 47 | 1+6T+pT2 |
| 53 | 1+4T+pT2 |
| 59 | 1−12T+pT2 |
| 61 | 1+10T+pT2 |
| 67 | 1+14T+pT2 |
| 71 | 1+8T+pT2 |
| 73 | 1+8T+pT2 |
| 79 | 1−16T+pT2 |
| 83 | 1−2T+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1+16T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.046460112719450832914573677804, −8.125314960122643492265723439737, −7.14831674158858802892659992469, −6.55536659882703175830371730918, −5.77630218563910465834928061038, −4.65101662855925806243412279834, −3.86307675984348758158108701206, −2.85591890992545130759706287184, −1.69174310740343087998151716036, 0,
1.69174310740343087998151716036, 2.85591890992545130759706287184, 3.86307675984348758158108701206, 4.65101662855925806243412279834, 5.77630218563910465834928061038, 6.55536659882703175830371730918, 7.14831674158858802892659992469, 8.125314960122643492265723439737, 9.046460112719450832914573677804