Properties

Label 2-1800-1.1-c1-0-18
Degree $2$
Conductor $1800$
Sign $-1$
Analytic cond. $14.3730$
Root an. cond. $3.79118$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s + 4·11-s − 4·13-s − 4·19-s − 2·23-s − 2·29-s − 4·37-s − 2·41-s + 6·43-s − 6·47-s − 3·49-s − 4·53-s + 12·59-s − 10·61-s − 14·67-s − 8·71-s − 8·73-s − 8·77-s + 16·79-s + 2·83-s − 6·89-s + 8·91-s − 16·97-s − 6·101-s − 14·103-s − 10·107-s − 6·109-s + ⋯
L(s)  = 1  − 0.755·7-s + 1.20·11-s − 1.10·13-s − 0.917·19-s − 0.417·23-s − 0.371·29-s − 0.657·37-s − 0.312·41-s + 0.914·43-s − 0.875·47-s − 3/7·49-s − 0.549·53-s + 1.56·59-s − 1.28·61-s − 1.71·67-s − 0.949·71-s − 0.936·73-s − 0.911·77-s + 1.80·79-s + 0.219·83-s − 0.635·89-s + 0.838·91-s − 1.62·97-s − 0.597·101-s − 1.37·103-s − 0.966·107-s − 0.574·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(14.3730\)
Root analytic conductor: \(3.79118\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + 4 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 14 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 8 T + p T^{2} \)
79 \( 1 - 16 T + p T^{2} \)
83 \( 1 - 2 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.046460112719450832914573677804, −8.125314960122643492265723439737, −7.14831674158858802892659992469, −6.55536659882703175830371730918, −5.77630218563910465834928061038, −4.65101662855925806243412279834, −3.86307675984348758158108701206, −2.85591890992545130759706287184, −1.69174310740343087998151716036, 0, 1.69174310740343087998151716036, 2.85591890992545130759706287184, 3.86307675984348758158108701206, 4.65101662855925806243412279834, 5.77630218563910465834928061038, 6.55536659882703175830371730918, 7.14831674158858802892659992469, 8.125314960122643492265723439737, 9.046460112719450832914573677804

Graph of the $Z$-function along the critical line