Properties

Label 2-1800-1.1-c3-0-19
Degree $2$
Conductor $1800$
Sign $1$
Analytic cond. $106.203$
Root an. cond. $10.3055$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 20·7-s + 56·11-s + 86·13-s − 106·17-s + 4·19-s + 136·23-s + 206·29-s − 152·31-s − 282·37-s + 246·41-s − 412·43-s + 40·47-s + 57·49-s − 126·53-s − 56·59-s − 2·61-s + 388·67-s + 672·71-s − 1.17e3·73-s − 1.12e3·77-s + 408·79-s + 668·83-s − 66·89-s − 1.72e3·91-s + 926·97-s + 198·101-s + 1.53e3·103-s + ⋯
L(s)  = 1  − 1.07·7-s + 1.53·11-s + 1.83·13-s − 1.51·17-s + 0.0482·19-s + 1.23·23-s + 1.31·29-s − 0.880·31-s − 1.25·37-s + 0.937·41-s − 1.46·43-s + 0.124·47-s + 0.166·49-s − 0.326·53-s − 0.123·59-s − 0.00419·61-s + 0.707·67-s + 1.12·71-s − 1.87·73-s − 1.65·77-s + 0.581·79-s + 0.883·83-s − 0.0786·89-s − 1.98·91-s + 0.969·97-s + 0.195·101-s + 1.46·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(106.203\)
Root analytic conductor: \(10.3055\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1800,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.179718883\)
\(L(\frac12)\) \(\approx\) \(2.179718883\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 20 T + p^{3} T^{2} \)
11 \( 1 - 56 T + p^{3} T^{2} \)
13 \( 1 - 86 T + p^{3} T^{2} \)
17 \( 1 + 106 T + p^{3} T^{2} \)
19 \( 1 - 4 T + p^{3} T^{2} \)
23 \( 1 - 136 T + p^{3} T^{2} \)
29 \( 1 - 206 T + p^{3} T^{2} \)
31 \( 1 + 152 T + p^{3} T^{2} \)
37 \( 1 + 282 T + p^{3} T^{2} \)
41 \( 1 - 6 p T + p^{3} T^{2} \)
43 \( 1 + 412 T + p^{3} T^{2} \)
47 \( 1 - 40 T + p^{3} T^{2} \)
53 \( 1 + 126 T + p^{3} T^{2} \)
59 \( 1 + 56 T + p^{3} T^{2} \)
61 \( 1 + 2 T + p^{3} T^{2} \)
67 \( 1 - 388 T + p^{3} T^{2} \)
71 \( 1 - 672 T + p^{3} T^{2} \)
73 \( 1 + 1170 T + p^{3} T^{2} \)
79 \( 1 - 408 T + p^{3} T^{2} \)
83 \( 1 - 668 T + p^{3} T^{2} \)
89 \( 1 + 66 T + p^{3} T^{2} \)
97 \( 1 - 926 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.925312413838315296153567844285, −8.455320185200340270240312583880, −6.95383968431445259905055162589, −6.59496316899241756784596515146, −5.98217654583354121269046679930, −4.69809004211638301673652274808, −3.75589351529804126117477206645, −3.18847020563996099663551912861, −1.74854948086973600117930304728, −0.71893256481158632138902772625, 0.71893256481158632138902772625, 1.74854948086973600117930304728, 3.18847020563996099663551912861, 3.75589351529804126117477206645, 4.69809004211638301673652274808, 5.98217654583354121269046679930, 6.59496316899241756784596515146, 6.95383968431445259905055162589, 8.455320185200340270240312583880, 8.925312413838315296153567844285

Graph of the $Z$-function along the critical line