L(s) = 1 | − 20·7-s + 56·11-s + 86·13-s − 106·17-s + 4·19-s + 136·23-s + 206·29-s − 152·31-s − 282·37-s + 246·41-s − 412·43-s + 40·47-s + 57·49-s − 126·53-s − 56·59-s − 2·61-s + 388·67-s + 672·71-s − 1.17e3·73-s − 1.12e3·77-s + 408·79-s + 668·83-s − 66·89-s − 1.72e3·91-s + 926·97-s + 198·101-s + 1.53e3·103-s + ⋯ |
L(s) = 1 | − 1.07·7-s + 1.53·11-s + 1.83·13-s − 1.51·17-s + 0.0482·19-s + 1.23·23-s + 1.31·29-s − 0.880·31-s − 1.25·37-s + 0.937·41-s − 1.46·43-s + 0.124·47-s + 0.166·49-s − 0.326·53-s − 0.123·59-s − 0.00419·61-s + 0.707·67-s + 1.12·71-s − 1.87·73-s − 1.65·77-s + 0.581·79-s + 0.883·83-s − 0.0786·89-s − 1.98·91-s + 0.969·97-s + 0.195·101-s + 1.46·103-s + ⋯ |
Λ(s)=(=(1800s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1800s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.179718883 |
L(21) |
≈ |
2.179718883 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+20T+p3T2 |
| 11 | 1−56T+p3T2 |
| 13 | 1−86T+p3T2 |
| 17 | 1+106T+p3T2 |
| 19 | 1−4T+p3T2 |
| 23 | 1−136T+p3T2 |
| 29 | 1−206T+p3T2 |
| 31 | 1+152T+p3T2 |
| 37 | 1+282T+p3T2 |
| 41 | 1−6pT+p3T2 |
| 43 | 1+412T+p3T2 |
| 47 | 1−40T+p3T2 |
| 53 | 1+126T+p3T2 |
| 59 | 1+56T+p3T2 |
| 61 | 1+2T+p3T2 |
| 67 | 1−388T+p3T2 |
| 71 | 1−672T+p3T2 |
| 73 | 1+1170T+p3T2 |
| 79 | 1−408T+p3T2 |
| 83 | 1−668T+p3T2 |
| 89 | 1+66T+p3T2 |
| 97 | 1−926T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.925312413838315296153567844285, −8.455320185200340270240312583880, −6.95383968431445259905055162589, −6.59496316899241756784596515146, −5.98217654583354121269046679930, −4.69809004211638301673652274808, −3.75589351529804126117477206645, −3.18847020563996099663551912861, −1.74854948086973600117930304728, −0.71893256481158632138902772625,
0.71893256481158632138902772625, 1.74854948086973600117930304728, 3.18847020563996099663551912861, 3.75589351529804126117477206645, 4.69809004211638301673652274808, 5.98217654583354121269046679930, 6.59496316899241756784596515146, 6.95383968431445259905055162589, 8.455320185200340270240312583880, 8.925312413838315296153567844285