Properties

Label 2-1800-1.1-c3-0-39
Degree $2$
Conductor $1800$
Sign $-1$
Analytic cond. $106.203$
Root an. cond. $10.3055$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 34·7-s + 18·11-s − 12·13-s + 106·17-s − 44·19-s − 56·23-s + 270·29-s + 204·31-s − 120·37-s + 80·41-s − 536·43-s + 536·47-s + 813·49-s − 542·53-s − 174·59-s + 186·61-s − 332·67-s − 132·71-s + 602·73-s − 612·77-s − 548·79-s + 492·83-s − 1.05e3·89-s + 408·91-s − 482·97-s + 1.21e3·101-s − 898·103-s + ⋯
L(s)  = 1  − 1.83·7-s + 0.493·11-s − 0.256·13-s + 1.51·17-s − 0.531·19-s − 0.507·23-s + 1.72·29-s + 1.18·31-s − 0.533·37-s + 0.304·41-s − 1.90·43-s + 1.66·47-s + 2.37·49-s − 1.40·53-s − 0.383·59-s + 0.390·61-s − 0.605·67-s − 0.220·71-s + 0.965·73-s − 0.905·77-s − 0.780·79-s + 0.650·83-s − 1.25·89-s + 0.470·91-s − 0.504·97-s + 1.19·101-s − 0.859·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(106.203\)
Root analytic conductor: \(10.3055\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1800,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 34 T + p^{3} T^{2} \)
11 \( 1 - 18 T + p^{3} T^{2} \)
13 \( 1 + 12 T + p^{3} T^{2} \)
17 \( 1 - 106 T + p^{3} T^{2} \)
19 \( 1 + 44 T + p^{3} T^{2} \)
23 \( 1 + 56 T + p^{3} T^{2} \)
29 \( 1 - 270 T + p^{3} T^{2} \)
31 \( 1 - 204 T + p^{3} T^{2} \)
37 \( 1 + 120 T + p^{3} T^{2} \)
41 \( 1 - 80 T + p^{3} T^{2} \)
43 \( 1 + 536 T + p^{3} T^{2} \)
47 \( 1 - 536 T + p^{3} T^{2} \)
53 \( 1 + 542 T + p^{3} T^{2} \)
59 \( 1 + 174 T + p^{3} T^{2} \)
61 \( 1 - 186 T + p^{3} T^{2} \)
67 \( 1 + 332 T + p^{3} T^{2} \)
71 \( 1 + 132 T + p^{3} T^{2} \)
73 \( 1 - 602 T + p^{3} T^{2} \)
79 \( 1 + 548 T + p^{3} T^{2} \)
83 \( 1 - 492 T + p^{3} T^{2} \)
89 \( 1 + 1052 T + p^{3} T^{2} \)
97 \( 1 + 482 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.584232553168694314021033728585, −7.72876181082921071888120306898, −6.65113326413272609196858278755, −6.36475773943266278649277295625, −5.38424602421298264458701189354, −4.22572386700575919813598731174, −3.33768781813259207778091142683, −2.67389012941901964485779336576, −1.13503637543123197955099945814, 0, 1.13503637543123197955099945814, 2.67389012941901964485779336576, 3.33768781813259207778091142683, 4.22572386700575919813598731174, 5.38424602421298264458701189354, 6.36475773943266278649277295625, 6.65113326413272609196858278755, 7.72876181082921071888120306898, 8.584232553168694314021033728585

Graph of the $Z$-function along the critical line