Properties

Label 2-1800-1.1-c3-0-45
Degree $2$
Conductor $1800$
Sign $-1$
Analytic cond. $106.203$
Root an. cond. $10.3055$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 24·7-s + 44·11-s − 22·13-s + 50·17-s + 44·19-s − 56·23-s − 198·29-s − 160·31-s + 162·37-s + 198·41-s − 52·43-s + 528·47-s + 233·49-s − 242·53-s + 668·59-s + 550·61-s − 188·67-s − 728·71-s − 154·73-s − 1.05e3·77-s − 656·79-s + 236·83-s − 714·89-s + 528·91-s + 478·97-s − 1.56e3·101-s + 968·103-s + ⋯
L(s)  = 1  − 1.29·7-s + 1.20·11-s − 0.469·13-s + 0.713·17-s + 0.531·19-s − 0.507·23-s − 1.26·29-s − 0.926·31-s + 0.719·37-s + 0.754·41-s − 0.184·43-s + 1.63·47-s + 0.679·49-s − 0.627·53-s + 1.47·59-s + 1.15·61-s − 0.342·67-s − 1.21·71-s − 0.246·73-s − 1.56·77-s − 0.934·79-s + 0.312·83-s − 0.850·89-s + 0.608·91-s + 0.500·97-s − 1.54·101-s + 0.926·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(106.203\)
Root analytic conductor: \(10.3055\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1800,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 24 T + p^{3} T^{2} \)
11 \( 1 - 4 p T + p^{3} T^{2} \)
13 \( 1 + 22 T + p^{3} T^{2} \)
17 \( 1 - 50 T + p^{3} T^{2} \)
19 \( 1 - 44 T + p^{3} T^{2} \)
23 \( 1 + 56 T + p^{3} T^{2} \)
29 \( 1 + 198 T + p^{3} T^{2} \)
31 \( 1 + 160 T + p^{3} T^{2} \)
37 \( 1 - 162 T + p^{3} T^{2} \)
41 \( 1 - 198 T + p^{3} T^{2} \)
43 \( 1 + 52 T + p^{3} T^{2} \)
47 \( 1 - 528 T + p^{3} T^{2} \)
53 \( 1 + 242 T + p^{3} T^{2} \)
59 \( 1 - 668 T + p^{3} T^{2} \)
61 \( 1 - 550 T + p^{3} T^{2} \)
67 \( 1 + 188 T + p^{3} T^{2} \)
71 \( 1 + 728 T + p^{3} T^{2} \)
73 \( 1 + 154 T + p^{3} T^{2} \)
79 \( 1 + 656 T + p^{3} T^{2} \)
83 \( 1 - 236 T + p^{3} T^{2} \)
89 \( 1 + 714 T + p^{3} T^{2} \)
97 \( 1 - 478 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.687147679266628718588888118938, −7.52897034336328746954900834937, −6.99768584104102333715941849518, −6.07246550045469698457847110707, −5.48923955664485230872755505642, −4.11217773970782304976909373890, −3.54470403181847861116617730865, −2.50824677694422533718193916738, −1.20808733640550797019789221265, 0, 1.20808733640550797019789221265, 2.50824677694422533718193916738, 3.54470403181847861116617730865, 4.11217773970782304976909373890, 5.48923955664485230872755505642, 6.07246550045469698457847110707, 6.99768584104102333715941849518, 7.52897034336328746954900834937, 8.687147679266628718588888118938

Graph of the $Z$-function along the critical line