Properties

Label 2-1800-1.1-c3-0-61
Degree $2$
Conductor $1800$
Sign $-1$
Analytic cond. $106.203$
Root an. cond. $10.3055$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10·7-s + 46·11-s − 34·13-s − 66·17-s + 104·19-s − 164·23-s − 224·29-s − 72·31-s − 22·37-s − 194·41-s + 108·43-s + 480·47-s − 243·49-s − 286·53-s − 426·59-s + 698·61-s + 328·67-s − 188·71-s − 740·73-s + 460·77-s + 1.16e3·79-s − 412·83-s − 1.20e3·89-s − 340·91-s − 1.38e3·97-s + 1.12e3·101-s − 758·103-s + ⋯
L(s)  = 1  + 0.539·7-s + 1.26·11-s − 0.725·13-s − 0.941·17-s + 1.25·19-s − 1.48·23-s − 1.43·29-s − 0.417·31-s − 0.0977·37-s − 0.738·41-s + 0.383·43-s + 1.48·47-s − 0.708·49-s − 0.741·53-s − 0.940·59-s + 1.46·61-s + 0.598·67-s − 0.314·71-s − 1.18·73-s + 0.680·77-s + 1.66·79-s − 0.544·83-s − 1.43·89-s − 0.391·91-s − 1.44·97-s + 1.11·101-s − 0.725·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(106.203\)
Root analytic conductor: \(10.3055\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1800,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 10 T + p^{3} T^{2} \)
11 \( 1 - 46 T + p^{3} T^{2} \)
13 \( 1 + 34 T + p^{3} T^{2} \)
17 \( 1 + 66 T + p^{3} T^{2} \)
19 \( 1 - 104 T + p^{3} T^{2} \)
23 \( 1 + 164 T + p^{3} T^{2} \)
29 \( 1 + 224 T + p^{3} T^{2} \)
31 \( 1 + 72 T + p^{3} T^{2} \)
37 \( 1 + 22 T + p^{3} T^{2} \)
41 \( 1 + 194 T + p^{3} T^{2} \)
43 \( 1 - 108 T + p^{3} T^{2} \)
47 \( 1 - 480 T + p^{3} T^{2} \)
53 \( 1 + 286 T + p^{3} T^{2} \)
59 \( 1 + 426 T + p^{3} T^{2} \)
61 \( 1 - 698 T + p^{3} T^{2} \)
67 \( 1 - 328 T + p^{3} T^{2} \)
71 \( 1 + 188 T + p^{3} T^{2} \)
73 \( 1 + 740 T + p^{3} T^{2} \)
79 \( 1 - 1168 T + p^{3} T^{2} \)
83 \( 1 + 412 T + p^{3} T^{2} \)
89 \( 1 + 1206 T + p^{3} T^{2} \)
97 \( 1 + 1384 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.574259556317163784698141509614, −7.65002321887676829533358310696, −7.04156272848248849584558376047, −6.09743328249542248670045640864, −5.26480338295921929394123047351, −4.31341305928207759413358955265, −3.58706692950687204880715250725, −2.25952018678081181530397701399, −1.39813602893720354901435763939, 0, 1.39813602893720354901435763939, 2.25952018678081181530397701399, 3.58706692950687204880715250725, 4.31341305928207759413358955265, 5.26480338295921929394123047351, 6.09743328249542248670045640864, 7.04156272848248849584558376047, 7.65002321887676829533358310696, 8.574259556317163784698141509614

Graph of the $Z$-function along the critical line