L(s) = 1 | − 16·7-s − 36·11-s + 42·13-s − 110·17-s − 116·19-s + 16·23-s − 198·29-s + 240·31-s + 258·37-s − 442·41-s + 292·43-s + 392·47-s − 87·49-s + 142·53-s + 348·59-s − 570·61-s − 692·67-s − 168·71-s + 134·73-s + 576·77-s + 784·79-s + 564·83-s − 1.03e3·89-s − 672·91-s + 382·97-s + 674·101-s + 992·103-s + ⋯ |
L(s) = 1 | − 0.863·7-s − 0.986·11-s + 0.896·13-s − 1.56·17-s − 1.40·19-s + 0.145·23-s − 1.26·29-s + 1.39·31-s + 1.14·37-s − 1.68·41-s + 1.03·43-s + 1.21·47-s − 0.253·49-s + 0.368·53-s + 0.767·59-s − 1.19·61-s − 1.26·67-s − 0.280·71-s + 0.214·73-s + 0.852·77-s + 1.11·79-s + 0.745·83-s − 1.23·89-s − 0.774·91-s + 0.399·97-s + 0.664·101-s + 0.948·103-s + ⋯ |
Λ(s)=(=(1800s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1800s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.061907610 |
L(21) |
≈ |
1.061907610 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+16T+p3T2 |
| 11 | 1+36T+p3T2 |
| 13 | 1−42T+p3T2 |
| 17 | 1+110T+p3T2 |
| 19 | 1+116T+p3T2 |
| 23 | 1−16T+p3T2 |
| 29 | 1+198T+p3T2 |
| 31 | 1−240T+p3T2 |
| 37 | 1−258T+p3T2 |
| 41 | 1+442T+p3T2 |
| 43 | 1−292T+p3T2 |
| 47 | 1−392T+p3T2 |
| 53 | 1−142T+p3T2 |
| 59 | 1−348T+p3T2 |
| 61 | 1+570T+p3T2 |
| 67 | 1+692T+p3T2 |
| 71 | 1+168T+p3T2 |
| 73 | 1−134T+p3T2 |
| 79 | 1−784T+p3T2 |
| 83 | 1−564T+p3T2 |
| 89 | 1+1034T+p3T2 |
| 97 | 1−382T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.851753834284614091392857368247, −8.276090193346409480076597597649, −7.27047022555279141619102725140, −6.40697515062134833477875001115, −5.92580119689374399210033020739, −4.71396372682087169102626217987, −3.95307759304663441299461447116, −2.87091582790039404897616209390, −2.02558001185043872110530288433, −0.45968537237450876577772116559,
0.45968537237450876577772116559, 2.02558001185043872110530288433, 2.87091582790039404897616209390, 3.95307759304663441299461447116, 4.71396372682087169102626217987, 5.92580119689374399210033020739, 6.40697515062134833477875001115, 7.27047022555279141619102725140, 8.276090193346409480076597597649, 8.851753834284614091392857368247