Properties

Label 2-1800-1.1-c3-0-8
Degree $2$
Conductor $1800$
Sign $1$
Analytic cond. $106.203$
Root an. cond. $10.3055$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·7-s − 36·11-s + 42·13-s − 110·17-s − 116·19-s + 16·23-s − 198·29-s + 240·31-s + 258·37-s − 442·41-s + 292·43-s + 392·47-s − 87·49-s + 142·53-s + 348·59-s − 570·61-s − 692·67-s − 168·71-s + 134·73-s + 576·77-s + 784·79-s + 564·83-s − 1.03e3·89-s − 672·91-s + 382·97-s + 674·101-s + 992·103-s + ⋯
L(s)  = 1  − 0.863·7-s − 0.986·11-s + 0.896·13-s − 1.56·17-s − 1.40·19-s + 0.145·23-s − 1.26·29-s + 1.39·31-s + 1.14·37-s − 1.68·41-s + 1.03·43-s + 1.21·47-s − 0.253·49-s + 0.368·53-s + 0.767·59-s − 1.19·61-s − 1.26·67-s − 0.280·71-s + 0.214·73-s + 0.852·77-s + 1.11·79-s + 0.745·83-s − 1.23·89-s − 0.774·91-s + 0.399·97-s + 0.664·101-s + 0.948·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(106.203\)
Root analytic conductor: \(10.3055\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1800,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.061907610\)
\(L(\frac12)\) \(\approx\) \(1.061907610\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 16 T + p^{3} T^{2} \)
11 \( 1 + 36 T + p^{3} T^{2} \)
13 \( 1 - 42 T + p^{3} T^{2} \)
17 \( 1 + 110 T + p^{3} T^{2} \)
19 \( 1 + 116 T + p^{3} T^{2} \)
23 \( 1 - 16 T + p^{3} T^{2} \)
29 \( 1 + 198 T + p^{3} T^{2} \)
31 \( 1 - 240 T + p^{3} T^{2} \)
37 \( 1 - 258 T + p^{3} T^{2} \)
41 \( 1 + 442 T + p^{3} T^{2} \)
43 \( 1 - 292 T + p^{3} T^{2} \)
47 \( 1 - 392 T + p^{3} T^{2} \)
53 \( 1 - 142 T + p^{3} T^{2} \)
59 \( 1 - 348 T + p^{3} T^{2} \)
61 \( 1 + 570 T + p^{3} T^{2} \)
67 \( 1 + 692 T + p^{3} T^{2} \)
71 \( 1 + 168 T + p^{3} T^{2} \)
73 \( 1 - 134 T + p^{3} T^{2} \)
79 \( 1 - 784 T + p^{3} T^{2} \)
83 \( 1 - 564 T + p^{3} T^{2} \)
89 \( 1 + 1034 T + p^{3} T^{2} \)
97 \( 1 - 382 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.851753834284614091392857368247, −8.276090193346409480076597597649, −7.27047022555279141619102725140, −6.40697515062134833477875001115, −5.92580119689374399210033020739, −4.71396372682087169102626217987, −3.95307759304663441299461447116, −2.87091582790039404897616209390, −2.02558001185043872110530288433, −0.45968537237450876577772116559, 0.45968537237450876577772116559, 2.02558001185043872110530288433, 2.87091582790039404897616209390, 3.95307759304663441299461447116, 4.71396372682087169102626217987, 5.92580119689374399210033020739, 6.40697515062134833477875001115, 7.27047022555279141619102725140, 8.276090193346409480076597597649, 8.851753834284614091392857368247

Graph of the $Z$-function along the critical line