L(s) = 1 | + (0.987 − 0.156i)2-s + (0.951 − 0.309i)4-s + (0.156 + 0.987i)5-s + (−1.26 − 1.26i)7-s + (0.891 − 0.453i)8-s + (0.309 + 0.951i)10-s + (1.16 − 1.59i)11-s + (−1.44 − 1.04i)14-s + (0.809 − 0.587i)16-s + (0.453 + 0.891i)20-s + (0.896 − 1.76i)22-s + (−0.951 + 0.309i)25-s + (−1.58 − 0.809i)28-s + (0.437 + 1.34i)29-s + (−0.587 + 1.80i)31-s + (0.707 − 0.707i)32-s + ⋯ |
L(s) = 1 | + (0.987 − 0.156i)2-s + (0.951 − 0.309i)4-s + (0.156 + 0.987i)5-s + (−1.26 − 1.26i)7-s + (0.891 − 0.453i)8-s + (0.309 + 0.951i)10-s + (1.16 − 1.59i)11-s + (−1.44 − 1.04i)14-s + (0.809 − 0.587i)16-s + (0.453 + 0.891i)20-s + (0.896 − 1.76i)22-s + (−0.951 + 0.309i)25-s + (−1.58 − 0.809i)28-s + (0.437 + 1.34i)29-s + (−0.587 + 1.80i)31-s + (0.707 − 0.707i)32-s + ⋯ |
Λ(s)=(=(1800s/2ΓC(s)L(s)(0.827+0.562i)Λ(1−s)
Λ(s)=(=(1800s/2ΓC(s)L(s)(0.827+0.562i)Λ(1−s)
Degree: |
2 |
Conductor: |
1800
= 23⋅32⋅52
|
Sign: |
0.827+0.562i
|
Analytic conductor: |
0.898317 |
Root analytic conductor: |
0.947795 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1800(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1800, ( :0), 0.827+0.562i)
|
Particular Values
L(21) |
≈ |
2.040722437 |
L(21) |
≈ |
2.040722437 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.987+0.156i)T |
| 3 | 1 |
| 5 | 1+(−0.156−0.987i)T |
good | 7 | 1+(1.26+1.26i)T+iT2 |
| 11 | 1+(−1.16+1.59i)T+(−0.309−0.951i)T2 |
| 13 | 1+(0.951+0.309i)T2 |
| 17 | 1+(0.587−0.809i)T2 |
| 19 | 1+(−0.809−0.587i)T2 |
| 23 | 1+(0.951−0.309i)T2 |
| 29 | 1+(−0.437−1.34i)T+(−0.809+0.587i)T2 |
| 31 | 1+(0.587−1.80i)T+(−0.809−0.587i)T2 |
| 37 | 1+(−0.951−0.309i)T2 |
| 41 | 1+(0.309−0.951i)T2 |
| 43 | 1+iT2 |
| 47 | 1+(−0.587−0.809i)T2 |
| 53 | 1+(−0.533+1.04i)T+(−0.587−0.809i)T2 |
| 59 | 1+(0.253−0.183i)T+(0.309−0.951i)T2 |
| 61 | 1+(−0.309−0.951i)T2 |
| 67 | 1+(−0.587+0.809i)T2 |
| 71 | 1+(−0.809+0.587i)T2 |
| 73 | 1+(1.39−0.221i)T+(0.951−0.309i)T2 |
| 79 | 1+(1.11−0.363i)T+(0.809−0.587i)T2 |
| 83 | 1+(−0.550+0.280i)T+(0.587−0.809i)T2 |
| 89 | 1+(−0.309−0.951i)T2 |
| 97 | 1+(0.412−0.809i)T+(−0.587−0.809i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.638935967367129521031434268299, −8.643645633122293659701677026578, −7.31722375379722224009977606962, −6.75905058679485614292429353346, −6.35797071278338639551206506530, −5.46336435155787424586311140702, −4.08757700973510664690000723265, −3.39606869110169052523420321160, −3.03939895569984911033418252825, −1.28256989055274864656887971436,
1.82503051765450891098729033790, 2.65005575802921222235232569941, 3.96892197884780457403399458638, 4.51095668271484310525002847950, 5.63082471685750181578129078185, 6.10601852937052284052218404371, 6.91331008421149839833974544952, 7.83752928366725268925100048692, 8.897227820879674167235534799861, 9.529644692907562302252056924808