L(s) = 1 | + (0.642 − 0.766i)4-s + (−0.766 + 0.642i)5-s + (−1.36 + 0.366i)7-s + (−0.342 − 0.939i)9-s + (−0.173 − 0.984i)16-s + (−0.597 − 1.28i)17-s + i·20-s + (−1.40 + 0.123i)23-s + (0.173 − 0.984i)25-s + (−0.597 + 1.28i)28-s + (0.811 − 1.15i)35-s + (−0.939 − 0.342i)36-s + (0.123 − 1.40i)43-s + (0.866 + 0.5i)45-s + (−1.28 − 0.597i)47-s + ⋯ |
L(s) = 1 | + (0.642 − 0.766i)4-s + (−0.766 + 0.642i)5-s + (−1.36 + 0.366i)7-s + (−0.342 − 0.939i)9-s + (−0.173 − 0.984i)16-s + (−0.597 − 1.28i)17-s + i·20-s + (−1.40 + 0.123i)23-s + (0.173 − 0.984i)25-s + (−0.597 + 1.28i)28-s + (0.811 − 1.15i)35-s + (−0.939 − 0.342i)36-s + (0.123 − 1.40i)43-s + (0.866 + 0.5i)45-s + (−1.28 − 0.597i)47-s + ⋯ |
Λ(s)=(=(1805s/2ΓC(s)L(s)(−0.709+0.704i)Λ(1−s)
Λ(s)=(=(1805s/2ΓC(s)L(s)(−0.709+0.704i)Λ(1−s)
Degree: |
2 |
Conductor: |
1805
= 5⋅192
|
Sign: |
−0.709+0.704i
|
Analytic conductor: |
0.900812 |
Root analytic conductor: |
0.949111 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1805(1182,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1805, ( :0), −0.709+0.704i)
|
Particular Values
L(21) |
≈ |
0.5030846396 |
L(21) |
≈ |
0.5030846396 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.766−0.642i)T |
| 19 | 1 |
good | 2 | 1+(−0.642+0.766i)T2 |
| 3 | 1+(0.342+0.939i)T2 |
| 7 | 1+(1.36−0.366i)T+(0.866−0.5i)T2 |
| 11 | 1+(−0.5+0.866i)T2 |
| 13 | 1+(−0.342+0.939i)T2 |
| 17 | 1+(0.597+1.28i)T+(−0.642+0.766i)T2 |
| 23 | 1+(1.40−0.123i)T+(0.984−0.173i)T2 |
| 29 | 1+(−0.766+0.642i)T2 |
| 31 | 1+(−0.5−0.866i)T2 |
| 37 | 1+iT2 |
| 41 | 1+(−0.939+0.342i)T2 |
| 43 | 1+(−0.123+1.40i)T+(−0.984−0.173i)T2 |
| 47 | 1+(1.28+0.597i)T+(0.642+0.766i)T2 |
| 53 | 1+(0.984−0.173i)T2 |
| 59 | 1+(−0.766−0.642i)T2 |
| 61 | 1+(0.173+0.984i)T2 |
| 67 | 1+(0.642+0.766i)T2 |
| 71 | 1+(0.173−0.984i)T2 |
| 73 | 1+(−1.15−0.811i)T+(0.342+0.939i)T2 |
| 79 | 1+(0.939−0.342i)T2 |
| 83 | 1+(−0.366−1.36i)T+(−0.866+0.5i)T2 |
| 89 | 1+(0.939+0.342i)T2 |
| 97 | 1+(−0.642+0.766i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.440286355510871107092902891411, −8.433407425495988858717409555262, −7.28761811285294807981549047801, −6.67364822568785863254098024173, −6.22974114870588606817100308735, −5.30416186258105485323878057504, −3.93690940540000200548673935909, −3.12371103530665380156743823547, −2.33865530084199106035105353313, −0.34005321573832572035404083816,
1.91634048152943944396380247678, 3.09753847322977760940785880775, 3.84346253308110424663653513014, 4.62533877399846836748248385594, 6.00146535301962561152848881374, 6.56125734627026317341798071391, 7.60122289464399661086440974086, 8.071166358392073670213800357888, 8.754106516778917863821193659940, 9.767548246742453126574164379643