L(s) = 1 | + (0.939 + 0.342i)4-s + (−0.939 + 0.342i)5-s + (−0.173 − 0.984i)9-s + (1 − 1.73i)11-s + (0.766 + 0.642i)16-s − 20-s + (0.766 − 0.642i)25-s + (0.173 − 0.984i)36-s + (1.53 − 1.28i)44-s + (0.5 + 0.866i)45-s + (−0.5 + 0.866i)49-s + (−0.347 + 1.96i)55-s + (1.87 + 0.684i)61-s + (0.500 + 0.866i)64-s + (−0.939 − 0.342i)80-s + (−0.939 + 0.342i)81-s + ⋯ |
L(s) = 1 | + (0.939 + 0.342i)4-s + (−0.939 + 0.342i)5-s + (−0.173 − 0.984i)9-s + (1 − 1.73i)11-s + (0.766 + 0.642i)16-s − 20-s + (0.766 − 0.642i)25-s + (0.173 − 0.984i)36-s + (1.53 − 1.28i)44-s + (0.5 + 0.866i)45-s + (−0.5 + 0.866i)49-s + (−0.347 + 1.96i)55-s + (1.87 + 0.684i)61-s + (0.500 + 0.866i)64-s + (−0.939 − 0.342i)80-s + (−0.939 + 0.342i)81-s + ⋯ |
Λ(s)=(=(1805s/2ΓC(s)L(s)(0.934+0.356i)Λ(1−s)
Λ(s)=(=(1805s/2ΓC(s)L(s)(0.934+0.356i)Λ(1−s)
Degree: |
2 |
Conductor: |
1805
= 5⋅192
|
Sign: |
0.934+0.356i
|
Analytic conductor: |
0.900812 |
Root analytic conductor: |
0.949111 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1805(1199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1805, ( :0), 0.934+0.356i)
|
Particular Values
L(21) |
≈ |
1.256326172 |
L(21) |
≈ |
1.256326172 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.939−0.342i)T |
| 19 | 1 |
good | 2 | 1+(−0.939−0.342i)T2 |
| 3 | 1+(0.173+0.984i)T2 |
| 7 | 1+(0.5−0.866i)T2 |
| 11 | 1+(−1+1.73i)T+(−0.5−0.866i)T2 |
| 13 | 1+(0.173−0.984i)T2 |
| 17 | 1+(0.939+0.342i)T2 |
| 23 | 1+(−0.766−0.642i)T2 |
| 29 | 1+(0.939−0.342i)T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+T2 |
| 41 | 1+(−0.173−0.984i)T2 |
| 43 | 1+(−0.766+0.642i)T2 |
| 47 | 1+(0.939−0.342i)T2 |
| 53 | 1+(0.766+0.642i)T2 |
| 59 | 1+(0.939+0.342i)T2 |
| 61 | 1+(−1.87−0.684i)T+(0.766+0.642i)T2 |
| 67 | 1+(−0.939+0.342i)T2 |
| 71 | 1+(−0.766+0.642i)T2 |
| 73 | 1+(−0.173−0.984i)T2 |
| 79 | 1+(−0.173−0.984i)T2 |
| 83 | 1+(0.5−0.866i)T2 |
| 89 | 1+(−0.173+0.984i)T2 |
| 97 | 1+(−0.939−0.342i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.226866457780885609149043900824, −8.517439331773773822211621526116, −7.896049966513681869691897202696, −6.88128931310006562275676072200, −6.43804552585346934447718078479, −5.65428764236974543620038661643, −4.04883269614687562857412384411, −3.49275855474324674702688405565, −2.77956927167641606079338957195, −1.05990217004758937017361241634,
1.50995150883724228360282460664, 2.40970250396672848062314110143, 3.70558103905421531082912955313, 4.63244764492594870151805979057, 5.33750336412210329528675190446, 6.57056498811158570249991166592, 7.16732812334231693788432522025, 7.76959870443401389935655513046, 8.609225270588778728887401822860, 9.650385640120276749075800718007