L(s) = 1 | + (0.5 + 0.866i)4-s + (−0.5 + 0.866i)5-s + (0.5 + 0.866i)9-s − 2·11-s + (−0.499 + 0.866i)16-s − 0.999·20-s + (−0.499 − 0.866i)25-s + (−0.499 + 0.866i)36-s + (−1 − 1.73i)44-s − 0.999·45-s + 49-s + (1 − 1.73i)55-s + (1 + 1.73i)61-s − 0.999·64-s + (−0.499 − 0.866i)80-s + (−0.499 + 0.866i)81-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)4-s + (−0.5 + 0.866i)5-s + (0.5 + 0.866i)9-s − 2·11-s + (−0.499 + 0.866i)16-s − 0.999·20-s + (−0.499 − 0.866i)25-s + (−0.499 + 0.866i)36-s + (−1 − 1.73i)44-s − 0.999·45-s + 49-s + (1 − 1.73i)55-s + (1 + 1.73i)61-s − 0.999·64-s + (−0.499 − 0.866i)80-s + (−0.499 + 0.866i)81-s + ⋯ |
Λ(s)=(=(1805s/2ΓC(s)L(s)(−0.671−0.740i)Λ(1−s)
Λ(s)=(=(1805s/2ΓC(s)L(s)(−0.671−0.740i)Λ(1−s)
Degree: |
2 |
Conductor: |
1805
= 5⋅192
|
Sign: |
−0.671−0.740i
|
Analytic conductor: |
0.900812 |
Root analytic conductor: |
0.949111 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1805(654,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1805, ( :0), −0.671−0.740i)
|
Particular Values
L(21) |
≈ |
0.9051750357 |
L(21) |
≈ |
0.9051750357 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.5−0.866i)T |
| 19 | 1 |
good | 2 | 1+(−0.5−0.866i)T2 |
| 3 | 1+(−0.5−0.866i)T2 |
| 7 | 1−T2 |
| 11 | 1+2T+T2 |
| 13 | 1+(−0.5+0.866i)T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1+(0.5−0.866i)T2 |
| 31 | 1−T2 |
| 37 | 1+T2 |
| 41 | 1+(0.5+0.866i)T2 |
| 43 | 1+(0.5+0.866i)T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1+(−0.5+0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(−1−1.73i)T+(−0.5+0.866i)T2 |
| 67 | 1+(−0.5+0.866i)T2 |
| 71 | 1+(0.5+0.866i)T2 |
| 73 | 1+(0.5+0.866i)T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.10194378396398369010649243791, −8.662222920761846503929618367783, −7.902099249505173703172214692599, −7.52261717655196593223978452712, −6.89272211029900109895360237539, −5.76501086707982901293560452799, −4.77737323369318287143758728101, −3.80210848357441750356037224391, −2.77320480571584977700272445276, −2.25804372038258706175905864861,
0.63738001368318639160124004468, 1.97808180144457881941174612259, 3.15057363362349909747451420927, 4.37573129061761763166196690533, 5.19030032299635478293281023225, 5.78470530837588323895847250057, 6.84912811141498521671640861474, 7.59717800370047158160619429912, 8.343703000118279132387933579893, 9.284233658200396951443201340477