L(s) = 1 | + 5.34·2-s − 3·3-s + 20.6·4-s + 5·5-s − 16.0·6-s − 17.2·7-s + 67.4·8-s + 9·9-s + 26.7·10-s − 61.8·12-s + 8.03·13-s − 92.2·14-s − 15·15-s + 195.·16-s − 20.9·17-s + 48.1·18-s + 150.·19-s + 103.·20-s + 51.7·21-s + 150.·23-s − 202.·24-s + 25·25-s + 42.9·26-s − 27·27-s − 355.·28-s − 215.·29-s − 80.2·30-s + ⋯ |
L(s) = 1 | + 1.89·2-s − 0.577·3-s + 2.57·4-s + 0.447·5-s − 1.09·6-s − 0.931·7-s + 2.97·8-s + 0.333·9-s + 0.845·10-s − 1.48·12-s + 0.171·13-s − 1.76·14-s − 0.258·15-s + 3.05·16-s − 0.299·17-s + 0.630·18-s + 1.82·19-s + 1.15·20-s + 0.537·21-s + 1.36·23-s − 1.72·24-s + 0.200·25-s + 0.324·26-s − 0.192·27-s − 2.39·28-s − 1.37·29-s − 0.488·30-s + ⋯ |
Λ(s)=(=(1815s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1815s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
7.249237343 |
L(21) |
≈ |
7.249237343 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+3T |
| 5 | 1−5T |
| 11 | 1 |
good | 2 | 1−5.34T+8T2 |
| 7 | 1+17.2T+343T2 |
| 13 | 1−8.03T+2.19e3T2 |
| 17 | 1+20.9T+4.91e3T2 |
| 19 | 1−150.T+6.85e3T2 |
| 23 | 1−150.T+1.21e4T2 |
| 29 | 1+215.T+2.43e4T2 |
| 31 | 1+11.0T+2.97e4T2 |
| 37 | 1+131.T+5.06e4T2 |
| 41 | 1−61.1T+6.89e4T2 |
| 43 | 1−337.T+7.95e4T2 |
| 47 | 1+5.27T+1.03e5T2 |
| 53 | 1−747.T+1.48e5T2 |
| 59 | 1+492.T+2.05e5T2 |
| 61 | 1−766.T+2.26e5T2 |
| 67 | 1−807.T+3.00e5T2 |
| 71 | 1+516.T+3.57e5T2 |
| 73 | 1−769.T+3.89e5T2 |
| 79 | 1−108.T+4.93e5T2 |
| 83 | 1−280.T+5.71e5T2 |
| 89 | 1−379.T+7.04e5T2 |
| 97 | 1+1.27e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.107647706506929907118635035245, −7.48910919666661823649337252826, −6.98342593883051615622079322266, −6.23937895647582191355515965912, −5.47805624185853025382838741469, −5.07927566413406014728237320668, −3.89011763407546398641749332785, −3.24555745355426819042546724602, −2.29832199180087388270507584165, −1.01312022908241089503859133362,
1.01312022908241089503859133362, 2.29832199180087388270507584165, 3.24555745355426819042546724602, 3.89011763407546398641749332785, 5.07927566413406014728237320668, 5.47805624185853025382838741469, 6.23937895647582191355515965912, 6.98342593883051615622079322266, 7.48910919666661823649337252826, 9.107647706506929907118635035245