L(s) = 1 | + (0.535 + 1.64i)2-s + (0.809 + 0.587i)3-s + (−1.61 + 1.17i)4-s + (0.309 − 0.951i)5-s + (−0.535 + 1.64i)6-s + (−1.40 − 1.01i)8-s + (0.309 + 0.951i)9-s + 1.73·10-s − 2·12-s + (0.809 − 0.587i)15-s + (0.309 − 0.951i)16-s + (−0.535 + 1.64i)17-s + (−1.40 + 1.01i)18-s + (0.618 + 1.90i)20-s + 23-s + (−0.535 − 1.64i)24-s + ⋯ |
L(s) = 1 | + (0.535 + 1.64i)2-s + (0.809 + 0.587i)3-s + (−1.61 + 1.17i)4-s + (0.309 − 0.951i)5-s + (−0.535 + 1.64i)6-s + (−1.40 − 1.01i)8-s + (0.309 + 0.951i)9-s + 1.73·10-s − 2·12-s + (0.809 − 0.587i)15-s + (0.309 − 0.951i)16-s + (−0.535 + 1.64i)17-s + (−1.40 + 1.01i)18-s + (0.618 + 1.90i)20-s + 23-s + (−0.535 − 1.64i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1815 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.923 - 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1815 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.923 - 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.857118678\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.857118678\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.809 - 0.587i)T \) |
| 5 | \( 1 + (-0.309 + 0.951i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.535 - 1.64i)T + (-0.809 + 0.587i)T^{2} \) |
| 7 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 13 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (0.535 - 1.64i)T + (-0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 - T + T^{2} \) |
| 29 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (0.309 + 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (-0.809 - 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.309 + 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.535 + 1.64i)T + (-0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (0.535 + 1.64i)T + (-0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.314005779849021234843918916898, −8.763734279134567736726143618104, −8.217415218671791964751048329990, −7.55984875421439696565619117876, −6.54208094713616025033022716379, −5.72980743888037656104507117587, −4.97589579020083206326588579799, −4.28685672180684515957588240419, −3.57420621060066205574060693253, −1.97591358580546051465031042557,
1.20873786085515939217120398307, 2.43816103374506605957109761483, 2.82047950132424410147713282942, 3.65741771849464972727118255861, 4.66764074677438599133585514521, 5.71019950575326746720396149637, 6.92771655738706425327503590801, 7.35702753424612828922623798131, 8.747863501192013584990852543842, 9.306930685475737456956931361758