L(s) = 1 | + (0.535 + 1.64i)2-s + (0.809 + 0.587i)3-s + (−1.61 + 1.17i)4-s + (0.309 − 0.951i)5-s + (−0.535 + 1.64i)6-s + (−1.40 − 1.01i)8-s + (0.309 + 0.951i)9-s + 1.73·10-s − 2·12-s + (0.809 − 0.587i)15-s + (0.309 − 0.951i)16-s + (−0.535 + 1.64i)17-s + (−1.40 + 1.01i)18-s + (0.618 + 1.90i)20-s + 23-s + (−0.535 − 1.64i)24-s + ⋯ |
L(s) = 1 | + (0.535 + 1.64i)2-s + (0.809 + 0.587i)3-s + (−1.61 + 1.17i)4-s + (0.309 − 0.951i)5-s + (−0.535 + 1.64i)6-s + (−1.40 − 1.01i)8-s + (0.309 + 0.951i)9-s + 1.73·10-s − 2·12-s + (0.809 − 0.587i)15-s + (0.309 − 0.951i)16-s + (−0.535 + 1.64i)17-s + (−1.40 + 1.01i)18-s + (0.618 + 1.90i)20-s + 23-s + (−0.535 − 1.64i)24-s + ⋯ |
Λ(s)=(=(1815s/2ΓC(s)L(s)(−0.923−0.382i)Λ(1−s)
Λ(s)=(=(1815s/2ΓC(s)L(s)(−0.923−0.382i)Λ(1−s)
Degree: |
2 |
Conductor: |
1815
= 3⋅5⋅112
|
Sign: |
−0.923−0.382i
|
Analytic conductor: |
0.905802 |
Root analytic conductor: |
0.951736 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1815(269,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1815, ( :0), −0.923−0.382i)
|
Particular Values
L(21) |
≈ |
1.857118678 |
L(21) |
≈ |
1.857118678 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.809−0.587i)T |
| 5 | 1+(−0.309+0.951i)T |
| 11 | 1 |
good | 2 | 1+(−0.535−1.64i)T+(−0.809+0.587i)T2 |
| 7 | 1+(−0.309+0.951i)T2 |
| 13 | 1+(0.809−0.587i)T2 |
| 17 | 1+(0.535−1.64i)T+(−0.809−0.587i)T2 |
| 19 | 1+(0.309+0.951i)T2 |
| 23 | 1−T+T2 |
| 29 | 1+(−0.309+0.951i)T2 |
| 31 | 1+(0.309+0.951i)T+(−0.809+0.587i)T2 |
| 37 | 1+(−0.309+0.951i)T2 |
| 41 | 1+(−0.309−0.951i)T2 |
| 43 | 1−T2 |
| 47 | 1+(−0.809−0.587i)T+(0.309+0.951i)T2 |
| 53 | 1+(0.309+0.951i)T+(−0.809+0.587i)T2 |
| 59 | 1+(−0.309+0.951i)T2 |
| 61 | 1+(−0.535+1.64i)T+(−0.809−0.587i)T2 |
| 67 | 1−T2 |
| 71 | 1+(0.809+0.587i)T2 |
| 73 | 1+(−0.309+0.951i)T2 |
| 79 | 1+(0.535+1.64i)T+(−0.809+0.587i)T2 |
| 83 | 1+(−0.809−0.587i)T2 |
| 89 | 1−T2 |
| 97 | 1+(0.809−0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.314005779849021234843918916898, −8.763734279134567736726143618104, −8.217415218671791964751048329990, −7.55984875421439696565619117876, −6.54208094713616025033022716379, −5.72980743888037656104507117587, −4.97589579020083206326588579799, −4.28685672180684515957588240419, −3.57420621060066205574060693253, −1.97591358580546051465031042557,
1.20873786085515939217120398307, 2.43816103374506605957109761483, 2.82047950132424410147713282942, 3.65741771849464972727118255861, 4.66764074677438599133585514521, 5.71019950575326746720396149637, 6.92771655738706425327503590801, 7.35702753424612828922623798131, 8.747863501192013584990852543842, 9.306930685475737456956931361758